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1 Theory

This section details the theoretical model mentioned in the paper.

1.1 Model

1.1.1 Additional assumptions about the setting

Since the graph g represents an organization, we assume that it is connected. Following standard
practice, we also assume independence of degree1 across nodes (Jackson and Rogers, 2007;
López-Pintado, 2008; Lamberson, 2010; Tarbush and Teytelboym, 2017). This independence
assumption has an important implication: it makes it easy to derive the excess degree
distribution; that is, the degree distribution of a randomly chosen neighbor of a randomly
chosen node. With P (d) the probability that a randomly chosen node has degree d, d̄ the mean
degree in the network, and P̃ (d) the probability that a randomly chosen neighbor of a randomly
chosen node has degree d, we have

P̃ (d) ≡ P (d)d

d̄

1.1.2 Steady states under the mean field approximation

To study the properties of this model, we make a standard simplification (Jackson and Rogers,
2007; López-Pintado, 2008; Lamberson, 2010; Tarbush and Teytelboym, 2017) and consider a
degree-based mean field approximation. In other words, we solve the model assuming that all
agents have the same neighbor infection rate at time t equal to mean neighbor infection rate in
society: θit = θ ≡ E[θit] for any i ∈ N . Let ρ(d) ≡ Pr(yit = 1|di = d) be the mean infection rate
among agents of degree d. Note that ρ, the mean infection rate in society is ρ =

∑
d P (d)ρ(d)

and that
θ =

∑
d

P̃ (d)ρ(d) (1)

Using the mean field approximation allows analyzing the steady states of this dynamic
process; that is, points at which the infection rate θ remains constant. At each time period t,
a fraction q(θ, d) of non-infected agents of degree d becomes infected, and a fraction p(θ, d) of
infected agents of degree d recovers. This pins down the law of motion of ρ(d):

∂ρ(d)

∂t
= [1− ρ(d)]q(θ, d)− ρ(d)p(θ, d)

At the steady state, ρ(d) remains constant. In other words, its law of motion satisfies

∂ρ(d)

∂t
= 0 ⇐⇒ ρ(d) =

q(θ, d)

p(θ, d) + q(θ, d)
(2)

Substituting this expression for ρ(d) at the steady state into equation (1) gives θ =∑
d P̃ (d) q(θ,d)

p(θ,d)+q(θ,d) . Define H(θ) =
∑

d P̃ (d) q(θ,d)
p(θ,d)+q(θ,d) . At the steady state, it must be that

H(θ) = θ. In other words, steady states correspond to fixed points ofH. Let F ≡ {θ : H(θ) = θ}
be the set of such fixed points. Since H : [0, 1] → [0, 1] is continuous, F is non-empty. Define
θ ≡ max θ ∈ F and θ ≡ min θ ∈ F be the steady states that generate most and least infection,
respectively.

Generically, there may be many steady states. However, some specific parameter values give
us more traction. For instance, if there is no natural propensity to behave dishonestly, then a
situation where everyone behave honestly is stable. In other words, if αq = 0, then there is a
steady state at 0. The following proposition generalizes the intuition:

1The degree of node i on graph g is the number of neighbors of node i on graph g
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Proposition 1 (Corner solutions). θ = 0 ⇐⇒ αq = 0 and θ = 1 ⇐⇒ αp = 0.

Because situations in which all members of society behave similarly seem unrealistic, we
focus on cases where αp, αq ̸= 0. Additionally, note that when βp and βq have the same sign,
our linear setup implies that H is monotonic, and its derivative is either concave or convex. In
this case, there is a unique steady state. Formally:

Proposition 2 (Uniqueness). If αp, αq ̸= 0 and βp and βq have the same sign, then H(θ) has
a unique fixed point θ∗ = θ = θ.

1.1.3 Comparative statics

Having a better sense of the properties of steady states, we can now analyze how they change
across organizations. Let f ≡ (g, µ) be an organization, with g = (G,N) its associated network,
and µ = (αp, αq, βp, βq) a vector containing its associated parameters. We compare organizations
f and f ′ that differ either with respect to their graph g or their parameter values µ. In what
follows, notations use the ′ symbol to refer to f ′.

In order to make such comparisons, we must be able to compare across organizations that
may each have multiple steady states. We say that an organization is more honest than another
if both its maximal and minimal steady states sustain less dishonest behavior than the other.
Formally:

Definition 1 (Honest organizations). We say that organization f ′ is more honest than

organization f and write f ′ ⪰ f when θ′ ≤ θ and θ
′ ≤ θ.

A simple lemma gives a lot of traction. If the H function of organization f ′ is above that
of organization f , then f ′ is less honest than f . In other words, its rightmost and leftmost
fixed points shift to the right. We introduce the result in the following lemma and provide an
illustration in Supplementary Figure OA1:

Lemma 1 (Comparing organizations). If Hf ′(θ) ≥ Hf (θ) for any θ ∈ [0, 1], then f ′ ⪯ f .

H
(θ
)

0

1

0 1
θ

o
o'

θ

θ

θ'

θ'

Figure OA1: Illustration of lemma 1. Because Ho′ is above Ho, its rightmost and leftmost
fixed points are to the right of those of Ho.

A more natural definition would consider the percentage of agents behaving dishonestly at
the steady state instead of the neighbor infection rate. Working with the more natural definition
makes the problem less tractable. In the next section, we discuss the differences between the
two definitions, explain how both definitions are similar for the kinds of networks considered in
the empirical analysis, and show that the most important theoretical propositions are somewhat
robust to the alternative, more natural definition.
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Together, definition 1 and lemma 1 allow comparing organizations that differ only by one
of their parameters ϕ ∈ µ. The following proposition gives the result:

Proposition 3. Suppose organizations f and f ′ only differ by the value of one of their
parameters ϕ ∈ µ. We have:

α′
p ≥ αp ⇐⇒ f ′ ⪰ f

β′
p ≥ βp ⇐⇒ f ′ ⪰ f

α′
q ≥ αq ⇐⇒ f ′ ⪯ f

β′
q ≥ βq ⇐⇒ f ′ ⪯ f

Finally, let’s compare organizations that have the same parameter values µ, but differ in
their network g. Two networks can differ in many ways. We consider one specific kind of
variation, namely a shift in the degree distribution such that the degree distribution on f ′ first-
order stochastically dominates (FOSD) the degree distribution on f ,2 implying that the mean
degree on f ′ is higher than on f . The following two propositions give the results:

Proposition 4 (Increasing mean degree 1). Consider organizations o and f ′ with excess degree
distributions P̃ and P̃ ′ respectively such that P̃ ′ FOSD P̃ . If βp < 0 and βq ≥ 0, then f ′ ⪯ f .
If βp ≥ 0 and βq < 0, then f ′ ⪰ f .

Proposition 5 (Increasing mean degree 2). Consider organizations f and f ′ with excess degree
distributions P̃ and P̃ ′ respectively such that P̃ ′ FOSD P̃ . If βp ≥ 0 and βq ≥ 0, or βp < 0 and

βq < 0, then there is a threshold θ̂ ∈ (0, 1) such that
f ′ ⪰ f, if βp, βq ≥ 0 and θ∗ < θ̂

f ′ ⪰ f, if βp, βq < 0 and θ∗ ≥ θ̂

f ′ ⪯ f, if βp, βq ≥ 0 and θ∗ ≥ θ̂

f ′ ⪯ f, if βp, βq < 0 and θ∗ < θ̂

Together, propositions 4 and 5 show that the optimal organization differs widely depending
on parameter values (see figure OA2 for a graphical summary). A maximally connected
organization is optimal if (1) βp ≥ 0 and βq < 0, or (2) βp ≥ 0, βq ≥ 0, and there is sufficiently
few agents behaving dishonestly at the (unique) steady state, or (3) βp < 0, βq ≥ 0, and there
is many agents behaving dishonestly at the steady state. Supplementary Figure OA2 provides
a graphical illustration.

1.2 Another definition of honesty

Results in the previous section define an honest organization using the steady state mean
neighbor infection rate θ (Definition 1). A more natural definition would consider instead
the population infection rate ρ associated with these steady states. Let r : [0, 1] → [0, 1] be
the population infection rate associated with some steady state mean neighbor infection rate
θ. Analogously to F , the set of steady state mean infection rates in some organization, define
Rf ≡ rf (F), the set of population infection rates associated with those steady state mean
neighbor infection rates in organization f . Finally, define r ≡ max r ∈ Rf , and r = min r ∈ Rf

to be, respectively, the maximum and minimum steady state population infection rates. The
new definition says that an organization is more honest than another if both its maximal and
minimal steady state population infection rates sustain less dishonest behavior than the other.
This definition in this subsection and in the proofs of the results it introduces use the new
definition, unless otherwise noted. We have:

2That is, f ′ has a degree distribution P ′(d) such that
∑

d P
′(d)u(d) ≥

∑
d P (d)u(d) for any non-decreasing

function u.

6



0

0

-

+

βp

β
q

*+ if θ<θ^
*if θ>θ^

*+ if θ>θ^
*if θ<θ^

Figure OA2: Illustration of propositions 4 and 5. Consider o and o′ such that P ′(d) FOSD
P (d). + signs denote o′ ⪰ o, − signs denote o′ ⪯ o. Increasing mean degree may help or hurt,
depending on the values of βp, βq and the initial steady state θ∗.

Definition 2. We say that organization f ′ is more honest than organization f and write f ′ ⪰ f
when r′ ≤ r and r′ ≤ r.

The concepts of mean neighbor infection rate θ and population infection rate ρ can be at
odds when the degree distribution has high variance. As an example, consider a star network
of n nodes where the hub h is connected to the n − 1 remaning spokes. Suppose that at time
t, we have yht = 1 and yit = 0 for all spokes i ̸= h. The infection rate is ρ = 1

n . The neighbor
infection rate is θht = 0 for the hub, and θit = 1 for all spokes i ̸= h. As such, the mean
infection rate is θ = n−1

n . As n gets large, we have ρ → 0 and θ → 1. Formally, recall that

ρ =
∑

d P (d)ρ(d), while equation (1) gives θ =
∑

d P̃ (d)ρ(d) =
∑

d
P (d)d

d̄
ρ(d). If V(d) = 0, then

d = d̄, which implies θ = ρ. As V(d) increases, the excess degree distribution P̃ (d) upweights
the high-degree nodes relative to the degree distribution P (d) since, by definition, many nodes
are connected are connected to high-degree nodes. As such, θ upweights the infection rate of
high-degree nodes relative to ρ.

The differences between the population infection rate and the mean neighbor infection rate
imply that not all the regularities identified with Definition 1 are robust to using Definition
2. Indeed, the function rf (θ) needs not be monotonic, which prevents extending claims on
θ to claims on ρ. Specifically, the comparative statics on parameters (proposition 3) do not
travel unless one imposes strong regularity conditions that guarantee that rf (θ) is monotonic.
Propositions 5 and 4, which hold parameter values constant but vary the degree distribution do
travel, up to some additional restrictions that ensure that rf (θ) is monotonic.

Proposition 6 (Increasing mean degree 1 - definition 2). Consider organizations f and f ′ with
degree distributions P and P ′ respectively such that P ′ FOSD P and P̃ ′ FOSD P̃ . If βp < 0,

βq ≥ 0, and
∣∣∣βq

βp

∣∣∣ ≥ q(0,n−1)
p(0,n−1) , then f ′ ⪯ f . If βp ≥ 0, βq < 0, and

∣∣∣βq

βp

∣∣∣ ≤ q(0,n−1)
p(0,n−1) , then f ′ ⪰ f .

Proposition 7 (Increasing mean degree 2 - definition 2). Consider organizations o and o′ with
degree distributions P and P ′ respectively such that P ′ FOSD P and P̃ ′ FOSD P̃ . If αp, αq ̸= 0

and βp, βq have the same sign, then there is a threshold θ̂ ∈ [0, 1] such that
f ′ ⪰ f, if βp, βq ≥ 0 and θ∗ < θ̂

f ′ ⪯ f, if βp, βq ≥ 0 and θ∗ ≥ θ̂

f ′ ⪯ f, if βp, βq < 0 and θ∗ < θ̂

f ′ ⪰ f, if βp, βq < 0 and θ∗ ≥ θ̂
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1.3 Proofs

Proof of proposition 1. Solving for H(0) = 0, we find H(0) = 0 ⇐⇒ αq = 0. Similarly, solving
for H(1) = 1, we find H(1) = 1 ⇐⇒ αp = 0.

Proof of proposition 2. Note that

∂ρ(d)

∂θ
=

d[βqp(0, d) + βpq(0, d)]

[p(θ, d) + q(θ, d)]2

Because p(0, d), q(0, d) > 0, if βp and βq have the same sign, then ∂ρ(θ,d)
∂θ ≥ 0 ⇐⇒ ∂ρ(θ,d′)

∂θ ≥ 0
for any d, d′ ∈ {1, ..., n− 1}. As such, H is monotonic. Furthermore,

∂2ρ

∂θ2
= −2d [βqp(0, d) + βpq(0, d)](βq − βp)

[p(θ, d) + q(θ, d)]3

A similar argument shows that H ′ is monotonic.
If H and H ′ are monotonic and αp, αq ̸= 0, then H has a unique fixed point.

Proof of lemma 1. It suffices to show that θ′ ≥ θ and θ
′ ≥ θ.

The cases where θ = 0 and θ = 1 are trivial. We have θ′ ≥ 0 = θ, and since θ
′ ≤ 1, it must

be that θ
′
= θ = 1.

Consider θ > 0. We show that θ′ ≥ θ. Since Hf (0) > 0, it must be that Hf (θ) > θ for any
x ∈ [0, θ). So Hf ′(θ) ≥ Hf (θ) > θ for any x ∈ [0, θ). It must therefore be that θ′ ≥ θ.

Consider θ < 1. We show that θ
′ ≥ θ. Suppose θ

′
< θ. Since Hf (1) < 1, it must be that

Hf ′(θ) < θ for any x ∈ (θ
′
, 1]. So Hf (θ) ≤ Hf ′(θ) < θ, a contradiction.

Proof of proposition 3. Note that if ∂ρ(d)
∂ϕ ≥ 0 for any (θ, d), then

∂Hf

∂ϕ ≥ 0 for any θ. Using

lemma 1, this implies f ′ ⪯ f . Similarly, if ∂ρ(d)
∂ϕ ≤ 0 for any (θ, d), then

∂Hf

∂ϕ ≤ 0 for any θ,

which implies f ′ ⪰ f . We have:

∂ρ(d)

∂αp
= − q(θ, d)

[p(θ, d) + q(θ, d)]2
≤ 0

∂ρ(d)

∂βp
= − (1− θ)dq(θ, d)

[p(θ, d) + q(θ, d)]2
≤ 0

∂ρ(d)

∂αq
=

p(θ, d)

[p(θ, d) + q(θ, d)]2
≥ 0

∂ρ(d)

∂βq
=

θdp(θ, d)

[p(θ, d) + q(θ, d)]2
≥ 0

Proof of proposition 5. Note that

∂ρ(d)

∂θ
=

d[βqp(0, d) + βpq(0, d)]

[p(θ, d) + q(θ, d)]2

Suppose that βp, βq ≥ 0. Then, then we have ∂ρ(d)
∂θ ≥ 0 for any d, which implies that

∂Hf

∂θ ,
∂Hf ′
∂θ ≥

0. Furthermore, note that

∂ρ(d)

∂d
≥ 0 ⇐⇒ θ ≥ αqβp

αqβp + αpβq
≡ θ̂

This and P̃ ′ FOSD P̃ implies Hf ′(θ) ≥ Hf (θ) ⇐⇒ θ ≥ θ̂.
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Consider the case where θ∗ ≥ θ̂. It suffices to show that θ∗
′ ≥ θ∗. We prove this by

contradiction. Suppose that θ∗
′
< θ̂. Recall that Hf ′(0) > 0. If θ∗

′
< θ̂, then Hf ′(θ̂) = Hf (θ̂) ≥

θ̂ implies that Hf ′ must have another fixed point in (θ∗
′
, θ̂], contradicting proposition 2.

Suppose that θ∗
′ ∈ [θ̂, θ∗). Since Hf is increasing and has a unique fixed point at θ∗, it must

be that Hf (θ) > θ for any θ ∈ [θ̂, θ∗). This implies Hf ′(θ∗
′
) ≥ Hf (θ

∗′) > θ∗
′
, a contradiction.

The three other cases prove similarly.

Proof of proposition 4. Note that

∂ρ(d)

∂d
=

θαpβq − (1− θ)αqβp
[p(θ, d) + q(θ, d)]2

(3)

If βp < 0 and βq ≥ 0, then ∂ρ(d)
∂d ≥ 0. Since ρ is non-decreasing, P̃ ′ FOSD P̃ implies∑

d

P̃ ′(d)ρ(θ, d) ≥
∑
d

P̃ (d)ρ(θ, d),

that is Hf ′(θ) ≥ Hf (θ) for any θ. By lemma 1, f ′ ⪯ f .

If βp < 0 and βq ≥ 0, then ∂ρ(d)
∂d ≤ 0. Since −ρ is non-decreasing, FOSD implies

−
∑
d

P̃ ′(d)ρ(θ, d) ≥ −
∑
d

P̃ (d)ρ(θ, d),

that is Hf ′(θ) ≤ Hf (θ) for any θ. By lemma 1, f ′ ⪰ f .

Proof of proposition 7. Suppose that βp, βq ≥ 0. From the proof of proposition 5, define θ̂ ≡
αqβp

αqβp+αpβq
, and recall that ∂ρ(d)

∂d ≥ 0 ⇐⇒ θ ≥ θ̂. Consider the case where θ∗ ≥ θ̂.

Proposition 5 implies that θ∗
′ ≥ θ∗. We now show that f ′ ⪯ f . Let r∗ ≡ rf (θ

∗) and
r∗

′ ≡ rf ′(θ∗
′
) be the population infection rates at the steady state in f and f ′ respectively.

It suffices to show that r∗
′ ≥ r∗. Since ∂ρ(d)

∂θ ≥ 0, we have r∗ =
∑

d P (d)ρ(d, θ∗) ≤
P (d)

∑
d ρ(d, θ

∗′). Since P ′(d) FOSD P (d) and ρ(d, θ) is non-decreasing in d, we have∑
d P (d)ρ(d, θ∗

′
) ≤

∑
d P

′(d)ρ(d, θ∗
′
) = r∗

′
.

The three other cases prove similarly.

Proof of proposition 6. If βp < 0 and βq ≥ 0, then proposition 4 implies that θ′ ≥ θ and θ
′ ≥ θ.

Let’s show that r′ ≥ r. Note that
∣∣∣βq

βp

∣∣∣ ≥ q(0,n−1)
p(0,n−1) implies that ∂ρ(d)

∂θ ≥ 0 for any d ∈ {1, ..., n−

1}. As such, we have ∂r(θ)
∂θ ≥ 0. This implies that r = rf (θ) and r′ = rf ′(θ′). Furthermore,

∂ρ(d)
∂θ ≥ 0 for any d ∈ {1, ..., n−1} implies that rf (θ) =

∑
d P (d)ρ(d, θ) ≤

∑
d P (d)ρ(d, θ′). Since

P ′ FOSD P and ρ(d) is non-decreasing in d, then
∑

d P (d)ρ(d, θ′) ≤
∑

d P̃ (d)ρ(d, θ′) = rf ′(θ′).
We show similarly that r′ ≥ r.

The case when βp ≥ 0 and βq < 0 proves similarly.
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2 Measuring social ties

2.1 Descriptive statistics
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Figure OA3: Cumulative distribution of coworking hours by interaction level. The
cumulative distribution conditions on dyads of 1+ coworking hours. Points at 0 indicate the
percentage of 0 coworking hours dyads.

Threshold

Statistic 1h 2h 3h 4h 5h

betweenness 23.196 2.392 0.613 0.187 0.057
closeness 0.313 0.080 0.028 0.014 0.009
clustering 0.179 0.026 0.011 0.007 0.005
degree 3.038 0.509 0.173 0.087 0.057
eigenvector 0.184 0.434 0.758 0.885 0.934

Table OA1: Network descriptive statistics. This table reports the mean value of selected
network statistics as a function of the threshold used to define ties. All statistics but
eigenvector centrality decrease as the threshold increases, because networks become more sparse.
Eigenvector centrality increases as the threshold increases, because the few nodes that have non-
zero degree become more eigenvector central as networks become more sparse.

2.2 Validation with self-reported links

In January 2017, we surveyed all 174 clerks that had 3 months of tenure or more as of January
1st 2017. We administered two network surveys. In the first survey, we collected friendship and
co-working networks using a standard name generator.

In the second survey, we randomly sampled three random alters about which we asked
specific questions. Since most dyads interact infrequently, we divided the dyads in three
categories of frequent, intermediate, and rare interactions using terciles of time spent together
using punch-in data from the three months preceding the survey (October to December 2016),
and sampled, for each respondent, one of each such dyads. The questions included self-reported
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measures of knowledge about and friendship with alter on a 1-5 scale, as well as responses to
two quizzes designed to evaluate ego’s knowledge about alter on the professional, and personal
levels. Quizzes were incentivized. We report the questions below:

1. Name generator for the friendship network: “Who are the clerks with whom you discuss
personal matters?”

2. Name generator for the coworker network: “On a typical work day, who are the clerks
with whom you usually work?”

3. Self-reported measure of knowledge: “How much do you know X?” Answers: “Never heard
that name before,” “I know him/her by name,” “A little,” “Quite well,” “Very well.”

4. Self-reported measure of friendship: “How much do you discuss personal matters with
X?” Answers: “Never,” “Little,” “Somewhat,” “Much,” “A great deal.”

5. Personal knowledge quiz: “In which city was X born?”, “At home, does X have a [CRT
TV, flat-screen TV, desktop computer, laptop]?”, “What is X’s marital status?”, “Does
X have a sister?”

6. Professional knowledge quiz: “Is X a temporary or a permanent employee?”, “What is
X’s division?”, “What is X’s salary?”, “In what year did X join the company?”

We validate our measure of social interactions by investigating whether it correlates with
survey measures. To do so, we construct dyad-level measures of interaction time that count the
number of hours two clerks have spent over a period of time for a given level of interaction. We
consider three periods that all end on January 31 2017, and have a length of 1, 2, and 3 months.
We consider three increasingly weak level of interactions: “market,” “division,” and “global.”
“Market” counts the number of hours clerks i and j have spent operating in the same market.
“Division” counts the number of hours clerks i and j have spent processing claims from markets
that pertain to the same division, and “global” counts the number of hours clerks i and j have
spent at the call-center. From these data, we derive, for each dyad, interaction level, and time
period, the mean daily amount of time i and j have spent interacting.

Figure OA4 considers all our network data and estimates effect of interaction time on all
the outcomes elicited. We find that although effect sizes are small, market- and division-level
interactions significantly correlate with better knowledge on both the personal and professional
level, while global-level interactions do not, which confirms that interactions occurring within
market or within division capture stronger social relationships than interactions that occur more
globally.

Figure OA5 reproduces Manuscript Figure 5 using self-reported friendship and coworking
ties. Consistent with our main result, we find that dishonest behavior diffuses in all models.
We also find that honest behavior does not significantly diffuse in the coworking model and,
contrary to our main result, diffuses in the friendship model. This change when using self-
reported friendship ties suggests that those ties are homophilous.
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Figure OA4: Correlation between interaction time and self-reported ties. We report
OLS estimates of models in which both the outcome and independent variable are standardized,
with heteroskedastic-robust standard errors. Parameter values represent the effect of a one
standard deviation increase of the independent variable on the outcome, in terms of standard
deviations. As per Cohen’s rule of thumb, a effect size below 0.2 corresponds to a small effect,
while an effect size between 0.2 and 0.5 corresponds to a small to medium effect. Market- and
division-level interactions correlate with better knowledge on both the personal and professional
level, while global-level interactions do not.
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Figure OA5: This figure reproduces Manuscript Figure 5. All models subset to those clerks
that took the survey. All models use a threshold of .5 in s-score to define dishonest behavior.
The co-staffing model uses ties constructed through co-staffing for comparison. Other models
use self-reported ties elicited through a name generator instead. Dishonest behavior diffuses in
all models. Honest behavior is repellent in the co-staffing model, does not significantly diffuse
in the coworking model, and diffuses in the friendship model. That results change when using
self-reported friendship ties suggests that those ties are homophilous.
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Figure OA6: Distribution of dyad revenue. The solid line represents the median, and the
dotted line marks the $427 threshold.

3 Measuring dishonest behavior

3.1 Constructing s-scores

Threshold for component 1. We set the threshold for component 1 at $427, whcih matches
clerks’ average monthly wage (Table 1). Thus, with rkimt the revenue transferred by clerk i to
provider k during month t on market m, we define s1ikmt ≡ 1{rkimt > 427}. Figure OA6 shows
that the distribution of dyad revenue is largely skewed to the left, with $427 corresponding to
the 96th percentile.

Derivation of components 2 and 3. We now describe how we construct components 2 and
3 of the s-score. Consider first component 2. Let Yc = k ∈ K be the provider to which claim
c is allocated, with K the set of all providers operating on market m. Our null model M2

mt,
estimated for market m during month t estimates a multinomial logistic regression. With Uc

be a vector of covariates of claim c (see description below), and βkmt a vector of parameters for
provider k, the model writes

M2
mt : Pr(Yc = k|Uc) =

exp(U ′
cβkmt)∑

k′∈K exp(U ′
cβk′mt)

The model allows pinning down a null distribution of revenues across providers for any clerk.
Let (Rimt) be a length-K random vector of revenues for clerk i, with Rkimt the revenue allocated
to provider k. Under M2

mt and with Cimt the set of claims handled by i on market m during
month t and mc the value of claim c, we have that Rimt ∼

∑
c∈Cimt

mc Multinom(Uc, βmt).
Recall that s2ikmt ≡ 1− Pr(Rkimt > rkimt|M2

mt).
Consider now component 3. Let Zc = 1 if claim c was awarded suspiciously; that is, if it

was allocated after three or more draws (more than 90% of claims allocated through random
draws are allocated in two draws or fewer), or if it was allocated after opting out of the random
draw. Let Zc = 0 otherwise. Our null model M3

kmt, estimated for provider k in market m
during month t estimates a logistic regression. With Vc a vector of covariates of claim c (see
description below), and γmt a vector of parameters, the model writes

M3
kmt : Pr(Zc = 1|Vc) =

exp(V ′
cγkmt)

1 + exp(V ′
cγkmt)
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The model allows pinning down a null distribution of suspicious claim awards to provider
k. Let Fikmt be a random variable denoting the fraction of claims that were suspiciously
awarded to k by clerk i, and fikmt be the observed value of such random variable. Under the
null distribution and with Cikmt the set of claims awarded by i to provider k on market m

during month t, we have Fikmt ∼
∑

c∈CikmtBernoulli(Vc,γkmt)

|Cikmt| . Similar to component 2, we define

s3ikmt ≡ 1− Pr(Fikmt > fikmt|M3
kmt).

The distribution of revenues Rimt and of suspicious claim awards Fikmt are not tractable
analytically. As such, we approximate them using Monte Carlo simulations taking 1,000 draws
of Rimt and of Fikmt.

Covariates. Estimating models M2 and M3 requires selecting covariates. Since months are
a natural time unit in this setting, we estimate model parameters monthly. Selecting covariates
poses a tradeoff. On the one hand, one would like to include many covariates, such that our
null models account for as many sources of variation as possible across clerks. On the other
hand, some of our markets have very few transactions, thereby preventing the estimation of
overly complex models. Both models consider six time intervals that match known variations
in activity and are used by management in staffing decisions (see Section 3.1 for details). We
divide each day into three time intervals that correspond to the three shifts used by management
(morning (7a-2p), afternoon (2p-9p), and evening (9p-7a)). We further divide the week into
weekdays and weekends, for a total of 6 time intervals. Model M2, which considers claim
allocation, also controls for log-claim value, as some providers are often selected to handle more
complex, more valuable claims.

3.2 Validation

We show that s-scores indeed pick up dishonest or deviant behavior, then that s-scores pick up
dishonest, rather than deviant behavior.

We first show that s-scores indeed pick up dishonest or deviant behavior by showing that
such behavior is rare, and therefore contrary to the norm. We have seen that most clerks have
minuscule s-scores (Manuscript, Figure 4). We also show that clerks behaving dishonestly have
a small number of dishonest partners (Figure OA7).
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Figure OA7: Cumulative degree distribution of dishonest clerk-provider ties. This
figure plots the degree distribution of clerk-provider ties for all those ties that satisfy condition
1 of the s-score (i.e., revenue greater than $427). The grey line plots the degree distributions
of dishonest ties; i.e., ties with s-scores greater than .5. While clerks tend to have large
neighborhoods (25% clerks interact with exactly 1 provider), they have few dishonest partners.
71% clerks have no dishonest partners and 3% clerks have more than 1 dishonest partner.

We then show that s-scores pick up dishonest, rather than deviant behavior. We provide
evidence that the forms of rule-breaking captured by high s-scores underlie private gains
instead of other motives such as inexperience, “well-intentioned” rule-breaking, or clerk-provider
complementarities that facilitate cooperation.

We first show that engaging in dishonest behavior requires a modicum of experience, i.e. no
clerks with less than a year of tenure have high s-scores, while some of the clerks with more
than a year of tenure have high s-scores (Supplementary Figure OA8).
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Figure OA8: Correlation between tenure and dishonest behavior. The x-axis represents
the average tenure of a clerk over the period she has been observed, while the y-axis plots the
maximum s-score of any clerk-provider dyad she has been involved in. The black line is a loess
fit. It takes a modicum of experience to engage in dishonest behavior: clerks that have less
than one year of tenure all have low s-scores, while some of the clerks that have more than one
year of tenure have high s-scores.

We then rule out forms of “well-intentioned” rule-breaking by considering provider quality.
By “well-intentioned” rule breaking, we mean breaking the rules for the company’s gain; e.g.,
if the random draw system prevents fast allocation to better-performing providers. If s-scores
mainly picked up well-intentioned rule-breaking, then we should observe that clerk-provider
links with high s-scores should indicate high-quality providers. We show that such correlation
exists but has an unclear direction and a minuscule size (Supplementary Table OA2). We then
focus on those clerks that have high s-scores overall, as they should be more prone to selection
based on quality criteria, and find similar inconclusive results (Supplementary Figure OA9).
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Table OA2: Correlation between s-scores and provider quality

yearly ratings quarterly ratings

(1) (2) (3) (4) (5) (6)

s-score −0.002 −0.005** −0.006** 0.005 0.009** 0.008*
(0.004) (0.002) (0.003) (0.006) (0.004) (0.004)

Num.Obs. 4805 4805 4805 5620 5620 5620
R2 0.000 0.204 0.256 0.000 0.090 0.106
Mean DV 0.756 0.756 0.756 0.714 0.714 0.714
SD DV 0.037 0.037 0.037 0.09 0.09 0.09
Market FE ✓ ✓ ✓ ✓
Month FE ✓ ✓ ✓ ✓
Clerk FE ✓ ✓

Note: These models regress the quality rating of a provider on the s-
score of each dyad with revenue above $427 she is involved in. Models 1
to 3 use objective, yearly quality ratings, models 4 to 6 use subjective,
quarterly quality ratings that are both normalized to fall between 0 and
1. Objective quality ratings come from audits conducted yearly by the
firm to verify whether service providers conform to a series of pre-defined
quality standards. Subjective quality ratings use data from customer
satisfaction surveys in which poor quality ratings are verified by the firm.
We exclude data from dissatisfied customers whose complaints proved
untrue. Standard errors are clustered at the month and market levels.
There is little correlation between provider quality and s-scores, with
effect size of about one tenth of a standard deviation of the dependent
variable.
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Figure OA9: Correlation between s-scores and provider quality by clerk behavior.
We regress the quality rating of a provider on the s-score of each dyad with revenue above $427
she is involved in, adding an interaction term for clerk behavior (honest/dishonest). That is, we
estimate the following linear model rimt = αj +αm+αt+β0yjmt+β1sijmt+β2sijmtyjmt+ ϵijmt.
The dependent variable rimt corresponds to the quality of provider i in market m during month
t. It is measured through objective, yearly ratings (left panel) and subjective, quarterly ratings
(right panel). Both are normalized to fall between 0 and 1. Objective quality ratings come from
audits conducted yearly by the firm to verify whether service providers conform to a series of
pre-defined quality standards. Subjective quality ratings use data from customer satisfaction
surveys in which poor quality ratings are verified by the firm. We exclude data from dissatisfied
customers whose complaints proved untrue. The independent variable sijmt corresponds to the
s-score of the dyad between provider i and clerk j on market m during month t, and the variable
yjmt ∈ {0, 1} corresponds to the behavior (honest, yjmt = 0 vs. dishonest, yjmt = 1) of clerk j
on that same market-month. A clerk is defined to behave dishonestly if her maximum s-score
on a given month is above some threshold, reported on the top row of the x-axis. Models
include clerk, market, and month fixed effects (αj , αm, αt respectively) and cluster standard
errors at the month and market levels. Points report estimates of the effect of higher s-scores on
provider quality for clerks behaving honestly and dishonestly; i.e. β1 and β1 + β2 respectively.
Bars represent 90 and 95 percent confidence intervals clustered at the month and market levels.
The x-axis also reports the number of clerks behaving honestly and dishonestly for each model
(second and third rows). There is little correlation between provider quality and s-scores. That
correlation is minuscule for clerks behaving dishonestly (provider quality has a mean of 0.76 and
0.72 with a standard deviation of 0.04 and 0.09 for yearly and quarterly ratings, respectively),
and comparable between clerks behaving honestly and dishonestly for thresholds above 0.5.

Our data do not allow ruling out that s-scores capture clerk-provider complementarities that
facilitate cooperation, although limited contextual evidence casts doubt on this hypothesis. For
instance, a clerk may find it easier to work with a provider because they speak the same language.
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We do not have sufficient data on clerks’ and providers’ characteristics to test this hypothesis
quantitatively. However, all clerks have similar backgrounds (college-educated individuals in
their late twenties from the city in which the call center is located) and communicate with
providers in the country’s dialect of Arabic. Furthermore, any such communication advantage
with a specific provider (e.g., clerk i and provider k speak the same regional dialect) should be
shared with other providers on the market, since markets are defined geographically. Together,
this suggests that such complementarities should be rare.

3.3 The cost of dishonest behavior
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Figure OA10: Deriving misallocated revenue. In this example, white bars represent how
a clerk behaving honestly would have allocated a total revenue of 1,000 among providers 1 to
5. Grey bars represent the observed allocation from a clerk behaving dishonestly. Misallocated
revenue corresponds to the hatched portions, and equals 200; that is, 20% of total revenue.

Since dishonest behavior is the misallocation of claims following clerk-provider collusion
(Manuscript, Section 3.1), we leverage the s-score to estimate the proportion of revenue that was
misallocated over the period. Specifically, we single out dishonest behavior using a threshold
in s-scores. Clerks that behave dishonestly on a market significantly deviate from the average
allocation of revenue in that market (Condition 2, Manuscript Section 3.3). We use simulations
to recover the claim allocation of a clerk that behaved dishonestly, had she behaved honestly.
To do so, we leverage the null model M2

imt used to estimate component 2 of the s-score, which
provides the distribution of claims under honesty to obtain the distribution of revenues Rimt had
they behaved honestly. We finally derive the amount of misallocated revenue by comparing,
for each clerk-market, their simulated distribution to their observed distribution. The total
amount misallocated corresponds to the sum of upwards deviations of the actual distribution
of revenues as compared to the actual simulated distribution of revenue (Figure OA10 provides
a graphical representation).

Formally, re-using notation from section 3.1, let K be the set of providers operating in
market m, and rik be the revenue transfered by clerk i to provider k. Suppose dishonest
behavior is defined by a threshold s in s-score. Suppose that as per threshold s, clerk i behaved
dishonestly. Suppose furthermore that she allocated the vector of revenues ri = (rik)k∈K on
market m, but that draw n from M2 yields the vector of revenues r̃in = (r̃ikn)k∈K . The total
revenue misallocated by i from simulation n is therefore δin ≡

∑
k∈K(rik− r̃ikn)1{rik− r̃ikn ≥ 0}.

We then average δin over 1,000 simulations to obtain the average revenue misallocated by i,
δ̄i ≡ 1

1000

∑1000
n=1 δin.
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Table OA3: Misallocated revenue as a function of threshold in s-score
threshold in s-score misallocated revenue (K$) misallocated revenue (% revenue) % dishonest clerks

0.1 1,414 9.68% 2.83%
0.2 1,304 8.93% 2.48%
0.3 1,161 7.94% 2.08%
0.4 990 6.78% 1.68%
0.5 803 5.50% 1.32%
0.6 609 4.17% 0.97%
0.7 423 2.89% 0.66%

Note: The last column reports the percentage of clerk-market-months with dishonest behavior.

Table OA3 shows that misallocation is substantial, ranging between 2.9 and 9.7% of the
revenue generated by the markets analyzed in this study. For comparison, the third and second
largest markets in this set of markets generated, respectively, K$514 and K$1,100 over the study
period.

Results also show that fraud is committed by a minority, with even the lowest threshold
value putting the percentage of clerk-market-months with dishonest behavior around 3%. An
important reason for these low numbers is that most clerks manipulate little revenue in most
of the markets they operate in, meaning that they do not have enough to gain from behaving
dishonestly. As a result, their s-score is 0 (see Section 3.3).

Our preferred threshold value for the s-score is 0.5, as it is the estimate that matches most
closely 5%, the estimated cost of fraud to the median organization worldwide (Association of
Certified Fraud Examiners, 2018). We use this threshold as a baseline for estimation.

Finally, results remain fairly stable for a wide range of s-scores: using cutoffs between 0.3
and 0.7 makes the percentage of misallocated revenue vary by 1.5 percentage points relative to
our baseline of 0.5.
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4 Estimation strategy

4.1 Additional descriptive statistics

Figure OA11 below shows the correlation between all variables used in our main model (Equation
(3)) for a threshold of 0.5 in s-scores. The variable switch, dishonest behavior, and N alters

with opposite behavior correspond, respectively, to variables zimt+1, yimt, and nimt. All
other variables are controls included in the vector ximt. We include:

� Indicators of activity on market m during month t:

– log revenue (market): revenue generated by market m during month t. This
should correlate with higher revenue allocated by i to providers and thus, potentially,
to higher s-scores through component s1.

� Indicators of i’s behavior on market m during month t. These indicators should correlate
with higher revenue allocated by i to providers and thus, potentially, to higher s-scores
through component s1. These indicators are:

– log hours (clerk-market): the hours worked by clerk i on marketm during month
t. This should correlate with higher revenue allocated by i to providers and thus,
potentially, to higher s-scores through component s1.

– log revenue (clerk-market): the revenue generated by clerk i on marketm during
month t. This should correlate with higher revenue allocated by i to providers and
thus, potentially, to higher s-scores through component s1.

– log market experience: the experience of clerk i on market m at month t,
measured in months, to control for potential learning effects.

– degree: clerk i’s degree on market m at month t, measured using a threshold of 3
hours. We include this variable to compare clerks that share the same number of
links within a market, hence the same potential for diffusion.

� Indicators of i’s overall activity behavior during month t. These indicators should capture
higher overall activity and potentially lower s-scores, as These should indicate higher
overall activity, and potentially lower s-scores, as i’s effort is spread across markets. These
indicators are:

– log hours (clerk): hours worked by clerk i during month t on all markets. This
should correlate with higher revenue allocated by i to providers and thus, potentially,
to higher s-scores through component s1.

– log revenue (clerk): revenue generated by clerk i during month t on all markets.
This should correlate with higher revenue allocated by i to providers and thus,
potentially, to higher s-scores through component s1.

– clerk max. s-score: maximum s-score of clerk i during month t on all markets.
This capture i’s general tendency towards dishonest behavior.

22



1 0.38 0.43 0.28 0.26 0.21 0.04 0.09 0.08 0.12 0.16

0.38 1 0.73 0.39 0.52 0.34 0.06 0.18 0.16 0.17 0.34

0.43 0.73 1 0.78 0.6 0.5 0.12 0.21 0.2 0.11 0.25

0.28 0.39 0.78 1 0.3 0.43 0.04 0.07 0.11 0.01 0.11

0.26 0.52 0.6 0.3 1 0.84 0.57 0.54 0.55 0.22 0.45

0.21 0.34 0.5 0.43 0.84 1 0.62 0.54 0.62 0.21 0.41

0.04 0.06 0.12 0.04 0.57 0.62 1 0.64 0.65 0.2 0.36

0.09 0.18 0.21 0.07 0.54 0.54 0.64 1 0.84 0.2 0.34

0.08 0.16 0.2 0.11 0.55 0.62 0.65 0.84 1 0.17 0.39

0.12 0.17 0.11 0.01 0.22 0.21 0.2 0.2 0.17 1 0.38

0.16 0.34 0.25 0.11 0.45 0.41 0.36 0.34 0.39 0.38 1

log market experience

clerk max. s−score

log revenue (clerk)

log hours (clerk)

log revenue (clerk−market)

log hours (clerk−market)

log revenue (market)

N alters with opposite behavior

degree

switch

dishonest behavior

log
 m

ar
ke

t e
xp

er
ien

ce

cle
rk

 m
ax

. s
−s

co
re

log
 re

ve
nu

e 
(c

ler
k)

log
 h

ou
rs

 (c
ler

k)

log
 re

ve
nu

e 
(c

ler
k−

m
ar

ke
t)

log
 h

ou
rs

 (c
ler

k−
m

ar
ke

t)

log
 re

ve
nu

e 
(m

ar
ke

t)

N a
lte

rs
 w

ith
 o

pp
os

ite
 b

eh
av

ior

de
gr

ee

sw
itc

h

dis
ho

ne
st 

be
ha

vio
r

−1.0 −0.5 0.0 0.5 1.0
Correlation

N = 4,621 clerk−months

Figure OA11: Correlogram

4.2 Direct tests of the identifying assumptions

We provide direct evidence supporting identifying assumptions 1 and 2. We show that clerks are
assigned to markets independently of their behavior (Assumption 1) through two tests. First,
since management punishes dishonest behavior by dismissal (Section 3.1), then all else equal,
a clerk behaving dishonestly should see a shorter employement spell, if management observes
such behavior. Yet, we use survival models to show that dishonest behavior does not correlate
with shorter employment spells end (Supplementary Table OA4). Second, we test directly that
assignment to new markets is independent of one’s behavior. Clerks who behave dishonestly
are just as likely as clerks who behave honestly to be assigned to new markets and, conditional
on being assigned to a new market, there is no correlation between one’s own behavior and the
behavior of clerks working in the destination market (Supplementary Table OA5).

We then show that peer influence operates indeed at the market level (Assumption 2): we
find no meaningful evidence of influence when considering broader forms of social interactions
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(Supplementary Figure OA12). To do so, we consider alternative measures of social ties that
capture broader forms of social interactions. We consider division-level networks, in which two
clerks are connected if they were co-staffed on the same division, and the global network, in
which two clerks are connected if they were co-staffed at all during the same hour.

(1) (2)

s-score −1.601*** −0.320
(0.464) (0.457)

log(revenue) −0.346***
(0.042)

experience −0.012***
(0.003)

Num.Obs. 3854 3854
AIC 1769.0 1695.3

Table OA4: Identifying assumptions: Cox proportional hazard survival models for
the duration of clerks’ employment spells. Time-periods are months, and all models use
time-varying covariates, with s-score defined as a clerk’s maximum s-score on a given month,
experience defined in months from hiring date, and log revenue defined as the log of total revenue
handled by a clerk on a given month. Standard errors are clustered at the clerk level. Without
controls, clerks behaving dishonestly are less likely to see their employment spell end (model 1).
Controlling for revenue and experience, the length of the employment spells of clerks behaving
dishonestly is not significantly different from that of clerks behaving honestly (model 2). That
clerks behaving dishonestly are no more likely to be dismissed suggests that management is
unaware of their (dis)honest behavior.
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Figure OA12: Identifying assumptions: varying the source of influence. The x-axis
represents the relevant network used to define ties; “market” reproduces Manuscript Figure 5
in the paper with a threshold of 0.5 in s-scores; “global” define a tie between clerks i and j
during month t if they have spent at least one hour attending the workplace together; “division”
defines that same tie if they have spent one hour operating in markets pertaining to the same
same division. A clerk is defined as behaving dishonestly if her maximum s-score in all dyads
pertaining to the relevant set of interactions (i.e., market, division, or all) is greater than 0.5.
The x-axis reports the number clerks behaving (dis)honestly used in estimating the models
corresponding to Manuscript equation (3). Models are estimated using only those clerks who
have at least one dyad with revenue greater than $427 in the relevant subset at time t+1. Points
represent, for each model, the average marginal effect of an additional neighbor of opposite
behavior on switching behavior; bars are 90 and 95% confidence intervals clustered at the month
and market levels. All models include month and market fixed effects. Panel (a) reports models
without controls. In panel (b), controls are as follows. They are those discussed in footnote
7 of the Manuscript for “market.” Controls for “division” are similar but consider i’s degree
within her division instead of within market, and the log revenue of i’s division instead of the
log revenue of market m. Controls for “global” are similar to thos discussed in Materials and
Methods but consider i’s degree within the workplace instead of within market, and discard the
other controls defined for market m. Effect sizes are about 10 times smaller when considering
interactions that occur within the division or globally than when considering interactions than
occur within markets, suggesting that the relevant set of interactions do indeed occur within
markets.
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Movet+1 Market max s-scoret

(1) (2) (3) (4) (5)

Clerk max s-scoret −0.124*** −0.019 0.031 0.021 0.004
(0.037) (0.028) (0.022) (0.018) (0.012)

R2 0.284 0.335 0.031 0.056 0.325
Num.Obs. 1847 1847 7004 7004 7004
Month FE ✓ ✓ ✓ ✓ ✓
Clerk controlst ✓ ✓ ✓
Market controlst ✓

Table OA5: Identifying assumptions: clerks entering new markets. Clerk controls are
measured at month t and include clerk experience in months, log revenue, and number of hours
worked that month. Market controls are also measured at month t and include log market
revenue, and the number of clerks and of firms operating in that market. All models cluster
standard errors at the month and clerk level. Conditional on other determinants of moving,
there is no significant correlation between clerk (dis)honest behavior and entering new markets
(model 2). Conditional on moving, there is no significant correlation between clerk (dis)honest
behavior and the amount of dishonest behavior in the destination market (models 3 to 5). That
there is no correlation between clerk behavior and entering new markets suggests that clerks
are assigned to markets independently of their (dis)honest behavior.

4.3 Statistical tests for homophily

We first implement a permutation test (LaFond and Neville, 2010) that leverages the dynamic
nature of our network data. Under homophily, two clerks behaving similarly should be more
(less) likely to form (sever) links than two clerks with opposite behaviors. The test shows no
evidence of this pattern at conventional significance levels (see paragraph below for a description
of the procedure and Figure OA13 for results). We also implement a procedure outlined by
Shalizi and Thomas (2011). The procedure explicitly does not condition on existing, potentially
homophilous links by randomly assigning clerks within a market-month to one of two equal-
sized groups, and estimates the influence exerted by clerks of group i on clerks of group −i.
If any influence flows through the links connecting both groups, we should observe a non-zero
correlation between the outcomes of group i and those of group −i, which we verify empirically
(Figure OA14). Finally, exposure to peer influence is endogenous to network position (Aronow
and Samii, 2017). Individuals that are more central in the network are more likely to be exposed
to peer influence since they have more neighbors, or neighbors who are themselves more central.
Our main specification addresses this by controlling for degree. We show that our results are
robust to more closely-defined comparisons, by controlling for degree more flexibly and for a
variety of other centrality scores (Figure OA15).

A permutation test for homophily. We use a permutation test for homophily adapted from
LaFond and Neville (2010). Their intuition is simple: if there is homophily, then over time, ties
should form between individuals sharing similar values for some attribute – in our case, whether
clerk i behaves (dis)honestly. Their permutation procedure decorrelates one’s adoption pattern
from that of her neighbors. Considering periods t and t+ 1, they hold constant the number of
individuals that keep and drop the attribute between t and t+1, but permute their identity. In
other words, they randomize, among the agents that had the attribute at t, the ones who drop
it and randomize, among the agents that did not have the attribute at t, the ones who adopt
it. The authors consider only one graph over multiple periods. As such, their test statistic is
the variation between t and t + 1 of the χ2 statistic of the association table between whether
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the dyad i and j has a tie, and whether that dyad has the same attribute value. In order to use
that test jointly for several networks, we use a parametric specification:

gijmt = ατ + αm + β0t+ β1yijt + γtyijt + ϵijmt,

with gijmt = 1 if there is a tie between clerks i and j in market m during period t, yijt a binary
variable that equals 1 if i and j have the same (dis)honest behavior at period t, and t ∈ {0, 1}
a binary variable that equals 0 in the first period, and 1 the next period. The model compares
within months and within markets. As such, we include month fixed-effects ατ , and market
fixed-effects αm. The statistic of interest in this test is the parameter γ that captures whether
the effect of having the same attribute value increases between the first and the second period.
Note that there needs to be enough individuals capable of switching behaviors for there to be
enough permutations. The main analysis only considered those clerks that had at least one dyad
with revenue greater than $427 at t+1. We now consider only those market-months that had 5
such clerks or more at t+1, and consider only those clerks within the market. The expectation
is that the observed test statistic is not significantly different from the statistics generated by
the permutation procedure. Supplementary Figure OA13 below shows the results.
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Figure OA13: Identification - homophily: permutation test for homophily. The figure
reports the density of test statistics for a permutation test for homophily adapted from LaFond
and Neville (2010), using 1,000 permutations. The black bar represents the observed test
statistic, the dotted bars represent the 2.5 and 97.5 percentiles. Having similar attribute values
has about no effect on tie creation, which is not significantly different from what is to be expected
from a process where adoption decision is uncorrelated among neighbors.
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Figure OA14: Identification - homophily: identifying diffusion from non-neighbors.
This figure reports the results of the random split procedure described in Shalizi and Thomas
(2011). As per the procedure, we amend the model in Manuscript equation (3) as follows.
Within each market-month, we randomly assign each clerk to one of two equal-sized groups.
We then estimate the model in equation (3) considering as “peers” of clerk i those clerks that
belong to the group that i does not belong to. In other words, with gi the group of clerk
i, we define ni as the number of clerks in g−i whose behavior at t is opposite to i’s. We
repeat the procedure 1,000 times, collecting parameters γ0, γ1 at each iteration. The figure
reports the median γ0, γ1 (triangles), as well as the 95 and 90% confidence intervals (too small
to show in this figure). The procedure explicitly does not condition on existing, potentially
homophilous ties. That g−i correlates with i indicates that some influence is at play in the
network. For comparison, the Figure also reports estimates and 90 and 95% confidence intervals
from our main models (circles, reproduced from Manuscript Figure 5). As expected by Shalizi
and Thomas, the procedure understates the effects of peers. Influence as measured by the
procedure is significantly different from zero, indicating that some influence is at play, and goes
in the expected direction.
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Figure OA15: Identification: extended controls for network centrality. This Figure
reproduces Manuscript Figure 5 but introduces extended controls for network centrality. All
models use a threshold of .5 in s-score to define dishonest behavior. The baseline model does
not control for centrality scores. Other models control for the centrality score mentioned in the
x-axis evaluated at t (degree, eigenvector centrality, local clustering, betweenness, closeness), as
well as their interaction with (dis)honest behavior at t. The “degree strata” models control for
degree using degree strata for degree = 0, degree = 1, and quintiles when degree > 1, as well
as their interaction with (dis)honest behavior at t. Models in panel (b) further control for the
set of controls mentioned in Manuscript footnote 7.
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4.4 Statistical tests for the reflection problem

yit

yjt

yit+1

yjt+1

ut+1ut

Figure OA16: Causal directed acyclic graph of the influence process estimated by the
model in equation (3). The figure considers two connected agents i, j and omits controls.
Following the notation introduced in the theory, nodes y ∈ {0, 1} represent the behaviors
of clerks i, j at times t, t + 1. Nodes u represent unobservables. Arrows represent causal
relationships.

We discuss the rationale underlying our tests of the reflection problem. Figure OA16 represents
the causal directed acyclic graph (Pearl, 2009) underlying the process of dynamic influence
estimated by the model in equation (3) in the paper, omitting controls and only for two agents
i, j that share a tie. As discussed in Section 4, identifying the causal effect of yjt on yit+1

requires meeting three assumptions, which we describe formally:

1. No correlated shocks: nodes u do not contain (unobserved) shocks that may affect both i
and j.

2. No homophily: that i and j share a link at t is independent of yit, yjt.

3. No reflection problem: the backdoor path yjt → yjt+1 ← ut+1 → yit+1 needs to be blocked.

Our first test changes time windows. Indeed, the backdoor path yjt → yjt+1 ← ut+1 →
yit+1 would disappear if one removed yjt+1 ← ut+1 → yit+1. This last part captures the
contemporaneous influence that i and j exert on one another. The magnitude of the bias
should increase the more time i and j have to influence one another. Supplementary Figure
OA17 below shows the results.

Our second test controls for peers’ current outcomes. Doing so blocks the backdoor path
from yjt to yit+1 by controlling for yjt+1. In other words, we augment the model in equation
(3) with the number of peers of opposite behavior at t+ 1. Supplementary Figure OA18 below
shows the results.
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Figure OA17: Identification - reflection problem: varying window size. The x-axis
represents the length in days used to define a time period to estimate the model in Manuscript
equation (3), as well as the number of clerks behaving honestly and dishonestly implied by
such threshold. Points represent, for each model, the average marginal effect of an additional
neighbor of the opposite behavior on switching behavior; bars are 90 and 95% confidence
intervals clustered at the period and market levels. All models include period and market
fixed effects and use a threshold of .5 in s-score to define dishonest behavior. Panel (a) reports
models without controls, panel (b) reports models with the controls discussed in Manuscript,
footnote 7. Although magnitudes decrease as window sizes get smaller, results are qualitatively
similar, suggesting that the reflection problem has little impact on results.
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Figure OA18: Identification - reflection problem: controlling for peers’ behavior at
t + 1. The figure reproduces Manuscript Figure 5 but controls for nit+1, the number of peers
from the opposite behavior at t+1 that were also operating in market m at time t. Additionally,
models with controls (panel b) also control for xt+1, the set of controls discussed in Materials
and Methods in the paper, evaluated at t + 1. Results are largely unchanged, suggesting that
the reflection problem has little impact on results.

4.5 Test for selection into providers

We our concerned that our main specification, which aggregates clerk-provider interactions
into a clerk-level indicator of dishonest behavior, may confound peer effects with selection into
providers. It may be that clerks behaving dishonestly all collude with the same set of dishonest
providers. In this environment, dishonest providers would, e.g., approach clerks and individually
entice them into collusion, with between-clerks interaction playing no role. Thus, what looks
like between-clerks influence would merely reflect selection into the same set of clerk-provider
relationships. We rule out this possibility by testing whether between-clerk influence survives
when fixing the provider of interest. To do so, we reestimate the specification in equation (3)
in the Manuscript at the provider level, and show that between-clerk influence survives.

Considering clerk i operating with provider k in market m during month t, equation (3)
becomes:

zikmt+1 = αkm + αt + βyikmt + γ0nikmt + γ1nikmtyikmt + δx′ikmt + ϵikmt (4)

Our dependent variable zikmt+1 ≡ 1{yikmt+1 ̸= yikmt} equals 1 if i’s behavior when interacting
with provider k changes between months t and t + 1 and 0 otherwise. Similar to our main
specification, we turn continuous s-scores into binary (dis)honest behaviors using a cutoff,
considering this time only interactions with provider k; that is, we define yikmt ≡ 1 {sikmt > s̄}.
We also amend our measure of social interactions to account for within-provider interactions;
instead of considering co-staffing interactions, we consider co-working interactions. Consistently

32



with our main specification, we consider that clerks i and j share a link through provider k if
they have spent at least 3 hours assigning claims to the same provider within market m during
month t. The variable nikmt captures the number of clerks that i shares a link with through
co-working interactions with provider k and whose behavior at t is opposite to that of i. We
finally perform within-provider comparisons by introducing a market-provider fixed effect αkm.3

Should results be driven by selection into providers, then we should observe no influence
when considering within-provider, co-working interactions. In other words, it should be that
parameters γ0 and γ0+γ1 are not statistically different from zero. We show in Figure OA19 that
this is not the case: we find that dishonest behavior diffuses while honest behavior is weakly
repellent, even when considering within-provider interactions.
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Figure OA19: Identification: selection into providers. This figure reports estimates of
parameters γ0 (gray) and γ0 + γ1 (black) for the model reported in equation (4). It follows
the same conventions as Manuscript Figure 5. Results are consistent with those reported in
Manuscript Figure 5: dishonest behavior diffuses, while honest behavior is weakly repellent,
even when considering within-provider interactions.

5 Robustness to alternative constructions of the data

Our main result reports estimates using different cutoffs for dishonest behavior (Manuscript,
Figure 5). Here, we show robustness to considering only components 2 and 3 of the s-score
(i.e., revenue distribution and gaming of the random draw system, respectively; Figures OA20
and OA21). We also show robustness to varying the threshold used to define component 1

3The vector of controls xikmt includes the controls discussed in Manuscript footnote 7 and further controls
for provider-level degree (i.e., the number of co-working interactions) and clerk-provider revenue.
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of the s-score (i.e., absolute revenue condition; Figure OA22). We also consider alternative
constructions of links. While our baseline definition posits a link between i and j if they have
spent at least three hours together, we show that results are robust to using cutoffs ranging
from 1 to 5 hours (Figure OA23). We further leverage these cutoffs to separate weaker and
stronger forms of interaction, showing that stronger forms of interaction (i.e., longer co-staffing
times) are more influential (Figure OA24). As discussed above, we also examine whether social
influence flows through more loosely defined forms of social interactions (Figure OA12) and
consider alternative time units (Figure OA17).
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Figure OA20: Robustness - data: using component 2 of the s-score. This figure
reproduces Manuscript Figure 5 but uses component 2 of the s-score (i.e., revenue distribution)
as the dependent variable instead of the full s-score. This component is highly skewed to the
right (Figure 4). For this reason, models using cutoffs smaller than .7 cannot be estimated, as
they show too little variance. Results are qualitatively similar to Manuscript Figure 5.
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Figure OA21: Robustness - data: using component 3 of the s-score. This figure
reproduces Manuscript Figure 5 but uses component 3 of the s-score (i.e., gaming the random
draw system) as the dependent variable instead of the full s-score. Results are qualitatively
similar to Manuscript Figure 5.
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Figure OA22: Robustness - data: varying component 1 of the s-score. This figure
reproduces Manuscript Figure 5 but varies the threshold used to define component 1 of the
s-score (i.e., threshold in absolute revenue transferred to a provider). Note that using higher
thresholds decreases sample size, as our estimates focus on those clerk-market-months that have
at least one provider with revenue higher than the threshold. Results are qualitatively similar
to Manuscript Figure 5.
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Figure OA23: Robustness - data construction: tie threshold. The x-axis represents the
threshold in time spent operating jointly in a market used for tie definition to estimate the model
in Manuscript equation (3), as well as the number of observations with no social ties implied
by the definition. Points represent, for each model, the average marginal effect of an additional
neighbor of the opposite behavior on switching behavior; bars are 90 and 95% confidence
intervals clustered at the month and market levels. All models include month and market
fixed effects, and use a threshold of .5 in s-score to define dishonest behavior. Panel (a) reports
models without controls, panel (b) reports models with the controls discussed in Materials and
Methods in the paper. With and without controls, effects have a similar magnitude irrespective
of the threshold for dishonest behavior. For clerks behaving dishonestly, effects get stronger
without controls, but are of comparable magnitude after introducing controls.
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Figure OA24: Robustness - data: strong and weak ties. This figure augments our main
model by separating interactions through weak ties and interactions through strong ties, where
stronger ties capture longer monthly co-staffing time. The x-axis reports the threshold used to
define strong ties (e.g., 3 hours means that co-staffing times ranging from 1 to 2 hours represent
weak ties, while co-staffing times of 3 hours or more represent strong ties). Strong ties are
more influential than weak ties. All models use a threshold of 0.5 in s-scores to define dishonest
behavior.

6 Mechanism

6.1 Separating conformism and complementarities

In line with Boucher et al. (2024), we establish that percentage models can capture both
conformism and complementarities, whereas count models do not account for complementarities.
Suppose agent i undertakes a costly, continuous action yi, with a baseline payoff function given
by v(yi) = αyi − 1

2y
2
i , where the quadratic term represents convex costs. To incorporate peer

influence, we define ȳi as the mean behavior of i’s peers and y+i as the sum of their behaviors.
First, we show that percentage models capture both conformism and complementarities.

Conformism can be modeled as agent i seeking to minimize the difference between her behavior
and that of their peers, represented as u(yi, ȳi) = v(yi) − β(yi − ȳi)

2. The quadratic term
penalizes deviations from peer behavior, capturing a preference for conformity. Alternatively,
complementarities can be captured by u(yi, ȳi) = v(yi)+βyiȳi, where an agent’s payoff increases
with the mean action of their peers. In both cases, solving the first-order conditions yields the
best response function y∗i = γ+δȳi. Agents’ best respones – which are what the econometrician
observes empirically – are linear in mean peer behavior. Extending the reasoning to binary
actions y ∈ {0, 1}, ȳ is the percentage of i’s neighbors taking action 1. Thus, y∗i = γ + δȳi is a
percentage model.

We then show how count models capture complementarities but not conformism. The
payoff function u(yi, y

+
i ) = v(yi)+βyiy

+
i introduces a term βyiy

+
i , capturing complementarities.

Solving for yi yields a best response function of the form y∗i = α+ βy+i , aligning with a count-
based specification. However, payoffs dependent on counts u(yi, y

+
i ) cannot easily incorporate

distance-based utilities like (yi − ȳi)
2, which are fundamental for modeling conformism. Thus,

while count models accommodate complementarities, they fail to capture conformist behavior.
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6.2 Additional evidence

(a) Baseline (b) With controls
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Figure OA25: Mechanism: percentage models. This figure reproduces Manuscript Figure
5 but uses the percentage of peers of opposite behavior instead of the count of peers of opposite
behavior as the dependent variable. Results are robust to this alternative modeling approach.
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Figure OA26: Mechanism: information - junior firms. This figure reproduces Figure OA19
but estimates effects separately for junior and senior firms. The x-axis varies the threshold used
to define junior and senior firms. All models use a threshold of .5 in s-score to define dishonest
behavior. Influence is weaker for junior firms than for senior firms.

.
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7 Counterfactuals

(a) Baseline (b) With controls
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Figure OA27: Robustness - modeling: flexible non-linear effects. This figure estimates
the model in Manuscript equation (3) but allows for flexible non-linear effects of the number of
peers of opposite behavior. The x-axis represents the number of peers of opposite behavior, and
the y-axis represents the effect of that number of peers of opposite behavior on the probability
of switching behavior. We use a threshold of .5 in s-scores to define dishonest behavior. The
dashed line represents the linear trend estimated in our main specification (Manuscript Figure
5). The fit is largely linear, although there is some evidence of concavities for the effect of alters
behaving dishonestly on egoes behaving honestly at time t, and of convexities for the effect of
alters behaving honestly on egoes behaving dishonestly at time t.

41



(a) Baseline (b) With controls
order 1 term

order 2 term

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.2

−0.1

0.0

0.1

0.2

0.00

0.02

0.04

0.06

threshold for dishonest behavior

pa
ra

m
et

er
 v

al
ue

ego behavior at time t dishonest honest

Figure OA28: Robustness - modeling: polynomial non-linear effects. This figure
reproduces Manuscript Figure 5 but accounts for non-linear effects by estimating quadratic
specifications on the number of peers of opposite behavior. Top panels report the parameter
value of the first order term, bottom panels report the parameter value of the second order
term. First-order effects are similar to those reported in Manuscript Figure 5. Second-order
effects are not consistently different from zero. They suggest convexities for the effect of alters
behaving dishonestly on egoes behaving honestly at time t, and concavities for the effect of
alters behaving dishonestly on egoes behaving honestly at time t.
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Figure OA29: Robustness - modeling: logit models. This figure reproduces Manuscript
Figure 5 but reports logistic regression estimates of the model in equation (3) instead of ordinary
least squares. Points report log-odds ratios and bars their associated 90 and 95% confidence
intervals. Results are robust to this alternative modeling approach.
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Figure OA30: Counterfactuals: logit estimates. This figure reproduces Figure 8 but uses
estimates derived from logistic regression estimates (Supplementary Figure OA29) instead of
OLS estimates. Results are robust to this change in specification.

43



References

Aronow, Peter M. and Cyrus Samii, “Estimating average causal effects under general
interference, with application to a social network experiment,” The Annals of Applied
Statistics, 2017, 11 (4), 1912 – 1947.

Association of Certified Fraud Examiners, “Report to the Nations. 2018 global study on
occupational fraud and abuse,” Technical Report 2018.

Boucher, Vincent, Michelle Rendall, Philip Ushchev, and Yves Zenou, “Toward a
general theory of peer effects,” Econometrica, 2024, 92 (2), 543–565.

Jackson, Matthew O and Brian W Rogers, “Relating Network Structure to Diffusion
Properties through Stochastic Dominance,” The B.E. Journal of Theoretical Economics, 2007,
7 (1), 1–13.

LaFond, Timothy and Jennifer Neville, “Randomization tests for distinguishing social
influence and homophily effects,” in “Proceedings of the International World Wide Web
Conference (WWW)” 2010.

Lamberson, PJ, “Social Learning in Social Networks,” The B.E. Journal of Theoretical
Economics, 2010, 10 (1), 1935–1704.
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