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Abstract

We consider a community formation process on a network. Following a seed agent, the

process unfolds sequentially, constrained by the network, and achieved through a sequence

of recruited agents making strategic offers to their neighbors. Under arbitrary, homogeneous

payoffs, there is essentially a unique subgame perfect equilibrium that is seed-optimal (i.e.,

maximizing the seed’s payoff). Considering heterogeneous payoffs, we highlight a tension

with efficiency and identify conditions that restore seed-optimality. Specializing to payoffs

monotonic in community and neighborhood sizes, we characterize equilibrium communities

across several important economic applications. We finally investigate key players and how

denser networks influence equilibrium welfare.
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1 Introduction

Motivation Situations in which agents choose their interaction partners are common.

Through these choices, agents form communities that endogenously generate payoffs for their

members. Thus, communities can be viewed as groups of agents who share similar interests;

i.e., similar payoffs. For example, individuals in the same Facebook group form a community

because they share common interests and tend to exhibit similar characteristics. Likewise, in-

dividuals who belong to the same political party, working group, or interest group also form

communities. Community members may also exhibit different, usually complementary charac-

teristics, yet share similar interests. For instance, researchers often collaborate in teams, with

different members contributing uniquely to various aspects of a paper. While no co-author can

necessarily complete the paper alone, the combination of skills from all co-authors makes the

paper possible. All co-authors share similar interests: once a paper is accepted by a journal, all

authors typically receive the same return from that publication. In other words, it is sensible

to assume that the payoffs of community members are homogeneous. Additionally, a paper

may begin with some co-authors and later require new members with different skills from the

existing ones. While there may be several agents with the same required skillset, not all are

reachable, either directly by the initiator or by their recruited agents. Individual connections

matter and limit the set of potential co-authors. Thus, the community formation process is

typically sequential and constrained by a pre-existing network structure. Given this structure,

recruitment is achieved through a delegated sequence of recruited agents making strategic offers

to their neighbors.

Our approach is applicable to various examples (some of which we explore in detail in Sec-

tion5), such as political activism, technology adoption, and criminal gang formation. Our aim is

to enhance the understanding of the strategic community formation process within a network.

We abstract from some strategic features that become relevant once the community formation

is complete, such as strategic actions taken by members post-formation.1 While integrating

community formation into a game with ex-post action choices is also of interest, we assume that

community payoffs already encompass these aspects. This allows us to provide a straightforward

framework for studying various features relevant to the strategic formation of communities. Our

approach also underscores the importance of community peers—a connected subgraph of the

network—and their interactions with neighbors who are not community members.

Main Contribution We develop a model to operationalize this motivation. A seed (or

initiator) forms a community on an exogenously given network. The links in the network are

undirected and represent connections between agents. The community formation process is

modeled as a sequential game, with recruitment constrained by the network structure. Given

this structure, recruitment is achieved through a delegated sequence of recruited agents making

strategic offers to their neighbors. This delegation means that the seed typically delegates

part of the recruitment process to some of its recruited agents, who in turn delegate to their

recruited agents, and so on, within the constraints of the given network structure. To emphasize

1See, e.g., Yariv and Baccara (2013) for a model where agents contribute to public projects after their group
is formed.
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the importance of connections, the initiator s can only recruit agents directly connected to her.

Similarly, her recruited agents can only recruit agents directly connected to them, and so forth.

Thus, community formation involves the seed delegating the recruitment process to subsequent

layers of agents. In the sequential game we introduce, the seed is randomly chosen by Nature.

In each subsequent period, a link between a community member and a community neighbor is

randomly drawn, without replacement. The community member then makes a binary choice:

whether to offer the neighbor to join the community. In turn, the neighbor makes the irreversible

choice of whether to accept the offer and join the community. Starting from the seed, this process

is sequential and finite due to the no-replacement assumption. We consider infinitely patient,

forward-looking agents who make strategic offers to their neighbors, anticipating the equilibrium

community that maximizes their payoffs.

Our first result (Theorem 1) characterizes the set of subgame perfect equilibria (SPE) of the

game for arbitrary, homogeneous payoffs. We show that SPE are essentially unique, as each SPE

maximizes the seed’s payoff.2 While Theorem 1 is important for understanding the community

formation process, it does not specify the type and size of communities that may form at

equilibrium. The only common characteristic of all SPE communities is that they maximize

the seed’s payoff. Additionally, we characterize Pareto-optimal equilibrium communities and

highlight the conditions under which these equilibrium communities are efficient (i.e., welfare-

maximizing).

An important by-product of Theorem 1 is that the assumption of homogeneous payoffs

eliminates any tension on the seed’s payoff that may arise from delegated recruitment. In this

sense, delegation is always seed-optimal in a world with homogeneous payoffs. We next explore

the robustness of our results when considering heterogeneous payoffs. We demonstrate that

various conditions on preferences can restore our key insight from Theorem 1; specifically, that

equilibrium communities maximize the seed’s payoff. These conditions emphasize the role of

bridges within the equilibrium communities, which must belong to the same preference class as

the seed. Furthermore, we show that allowing for transfers can restore the seed-optimality of

the delegation of recruitment. However, several examples illustrate that without assumptions

on the network structure or payoffs, delegation can unravel and fail to deliver an equilibrium

that maximizes the seed’s payoff—see, for instance, Example 2.

We then impose more structure on agents’ payoffs, assuming they depend on the number

of individuals in the community (i.e., community size) and the number of individuals who

are neighbors of the community (i.e., community neighborhood size). This added structure on

payoffs allows us to capture a wide variety of economic situations within a tractable framework.

We differentiate among three cases. First, we consider a case in which the payoff of each agent

is increasing with community size but decreasing with community neighborhood size (case 1,

Increasing-Decreasing (ID) monotone payoffs). An illustration of this case is political activism

in an autocracy (Chwe, 2000; Siegel, 2009). The higher the number of activists (the community),

the higher the payoff of being an activist. In contrast, the more witnesses (neighbors) there are,

the lower is the payoff, as witnesses may report activists to the autocrat, thereby weakening

2Essential uniqueness solely relates to the seed’s payoff maximization. For a given seed, different communities
(and of different sizes) may emerge across equilibria.
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the movement. Second, we study Increasing-Increasing (II) monotone payoffs (case 2), so that

payoffs are increasing in both community size and community neighborhood size. Technology

adoption (Chuang and Schechter, 2015; Breza, 2016) is a good illustration of this case. There are

complementarities in technology adoption between adopters (the community) but also positive

spillovers to non-adopters (the neighbors). Finally, we examine Decreasing-Increasing (DI)

monotone payoffs (case 3), where payoffs decrease with the community size but increase with

the community neighborhood size. This may be illustrated by criminal gangs (Carrington, 2011;

Lindquist and Zenou, 2019), for which the community is the set of criminal gang members,

while its neighborhood is the set of victims. Gang members are better off with larger numbers

of (potential) victims, but compete for resources. As such, larger gangs decrease the payoff of

individual gang members.

Our second main result (Theorem 2) further characterizes equilibrium communities in each

of our three cases and, most importantly, allows us to rank these cases by the size of their

equilibrium communities. First, we show that when payoffs are ID-monotone (case 1), equi-

librium communities always encompass all network agents, resulting in a single community

with no neighbors. Since payoffs increase with community size and decrease with neighborhood

size, the seed is incentivized to recruit every agent in the network. Next, when payoffs are

II-monotonous (case 2), equilibrium communities are always dominating communities; that is,

communities where the union of community members and their neighbors includes all network

agents. Because payoffs increase with both community size and neighborhood size, the seed

has an incentive to ensure that every network agent is either a community member or a neigh-

bor. Finally, when payoffs are DI-monotonous (case 3), equilibrium communities are always

exposed communities; that is, communities such that no smaller community has a weakly larger

neighborhood. Since payoffs decrease with community size and increase with neighborhood

size, the seed prefers small communities with a large set of neighbors (i.e., exposed communi-

ties). Together, these three results allow us to rank our cases by the size of their equilibrium

communities: the community size clearly decreases from case 1 to case 3.

Finally, we address a series of policy issues. First, we study the key player problem. As is

clear from Theorem 2, II-monotonous payoffs (case 2) leave the most room for further investiga-

tion as the size of equilibrium communities is not entirely pinned down, yet remains tractable.

For II-monotonous payoffs, we identify the key players in the network, defined as those players

who contribute the most to the payoffs of equilibrium communities. Key players are assessed

by how much equilibrium payoffs decrease once they are removed from the network. When

comparing two agents, we show in Proposition 3 that for II-monotone payoffs, key players are

partially characterized by two important network statistics resulting from removing an individ-

ual: the community size and the domination number.3 In other words, for II-monotone payoffs,

key players are significant because they act as gateways to some nodes—i.e., their removal re-

sults in smaller community sizes—or because they facilitate the creation of smaller dominating

communities, allowing faster access to such nodes.

In the last part of the paper, we examine the impact of increasing network density (i.e.,

3A dominating community is a community such that the union of its members and its neighborhood covers
the entire graph. The domination number is the size of the smallest dominating community in a graph.
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adding links) on equilibrium outcomes. We first show that for any class of monotonic payoffs

discussed previously, adding a link weakly increases the equilibrium payoff of the agents belong-

ing to the equilibrium community. The addition of a link has two potential effects: it either

makes existing communities more desirable or creates new communities that are potentially

more desirable. An important observation is that the increase in payoffs does not necessarily

raise overall welfare. The additional link may shrink the equilibrium community, potentially

leading to an overall decrease in welfare. We then return to II-monotone payoffs (case 2). In

Proposition 4, we show that additional links strictly increase the seed’s equilibrium payoff (and

thus, the payoff of all members of the equilibrium community) if and only if (i) the domination

number strictly decreases, and (ii) payoffs are such that agents prefer the smaller minimum

dominating community provided by this additional link. We conclude by providing three neces-

sary and sufficient conditions (Proposition 5) under which adding a link to an existing network

strictly reduces its domination number.

Related literature Our paper contributes to the games-on-network literature,4 by examining

the binary decision to join a community. The literature on network games has mostly focused

on continuous actions (Jackson and Zenou, 2015). As in our model, there are some papers

that have considered network games with binary actions (see, for example, Morris, 2000; Brock

and Durlauf, 2001; Jackson and Yariv, 2005, 2007; Leister et al., 2022; Campbell et al., 2024).

However, our model differs significantly as it focuses on binary actions involving whether or

not to join a community, whereas the literature on games on networks typically addresses

individual binary choices, such as adopting a new technology, a new operating system, or

becoming politically active.

Our equilibrium characterization in terms of communities also relates to other network

models that partition agents into endogenous community structures. These include risk shar-

ing (Ambrus et al., 2014), interaction between market and community (Gagnon and Goyal,

2017), behavioral communities (Jackson and Storms, 2019), information resale and interme-

diation (Manea, 2021), technology adoption (Leister et al., 2022), and perceived competition

(Bochet et al., 2021). This literature mainly focuses on the role of peers in the formation of mul-

tiple communities and characterizes the existence of multiple equilibrium communities within

a network. Here, we focus on the formation of one community only and model not only the

role of peers but also that of community neighbors who are not members of the community.

In particular, we show that depending on whether community neighbors exert positive (cases

2 and 3) or negative (case 1) spillovers on community members, the characterization of the

equilibrium communities can be very different (Theorem 2). This is one of the main novelties

of our model. We believe it is important in many real-world situations. Consider, for example,

the influential paper by Banerjee et al. (2013), who studied the role of peers and “key players”

in the individual adoption of a microfinance program in India. They showed that both adopters

and non-adopters have a key influence on the individual adoption of this microfinance program

in a village. This corresponds to our case 2, in which the community is the set of adopters,

while the community neighbors correspond to non-adopters who are exposed to the technology.

4For overviews, see Jackson (2008), Jackson and Zenou (2015), Bramoullé et al. (2016), and Jackson et al.
(2017).
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Because there are complementarities in adoption within the community and positive spillover

effects of non-adopters on adopters, we show that the equilibrium community is a dominating

community. That is, any person in the village is either an adopter or, if not, has a link to an

adopter. Clearly, we can only obtain this result because the payoff function of each agent is a

function of community members and their neighbors.

Finally, our model is related to the literature on community detection in computer sci-

ence and physics.5 Girvan and Newman (2002) were the first to develop an algorithm (the

Girvan-Newman algorithm) to detect communities by progressively removing edges from the

original network. The connected components of the remaining network were the communities.

Since then, many algorithms have been developed to detect node communities (e.g., New-

man and Girvan, 2004; Newman, 2006), overlapping communities, and link communities (e.g.,

Palla et al., 2005). In addition, statistical (Copic et al., 2009; Lancichinetti et al., 2011),

information-theoretic (Rosvall and Bergstrom, 2007) and synchronization and dynamical clus-

tering approaches (Yuan and Zhou, 2011) have also been developed to detect communities.

This literature takes a very different approach from ours, focusing purely on topology with

no strategic behavior. In contrast, our model is primarily based on individual behavior and the

subgame-perfect Nash equilibrium. While the network structure is important, in our model,

the payoffs are key to determining which community emerges in equilibrium. (Theorem 2).

The rest of the paper is organized as follows. In the next section, we describe our model and

introduce different notations. Section 3 provides a characterization of all SPE communities for

arbitrary homogeneous payoffs while Section 4 considers heterogeneous payoffs. In Section 5,

we consider homogeneous payoffs that are a function of community and neighborhood sizes. In

Section 6, we study the policy implications of our model by examining the key-player policy and

how adding links affects the equilibrium outcomes. Finally, Section 7 offers concluding remarks.

The proof of all our results can be found in the Appendix.

2 Setting

Basic definitions A network (or graph) is a pair (N,G), where G is a network on the set

of nodes (or agents) N = {1, ..., n}. For each pair i, j ∈ N , agents i and j are linked in G if

and only if ij ∈ G. We assume that the network is undirected ; that is, for each pair i, j ∈ N ,

ij ∈ G =⇒ ji ∈ G. A network (N,G) is complete if for each i, j ∈ N , ij ∈ G. We only consider

networks (N,G) that are connected, i.e., for each i, j ∈ N , there exists a path ii0, i0i1, . . . , ikj of

links between agents connecting agents i and j. In what follows, we simply refer to a network as

G. For any given agent i, we say that agent j is a neighbor of i if ij ∈ G. Since G is undirected,

agent i is also a neighbor of j.

Let s ∈ N be called a seed (or initiator). A community C is a connected subgraph of G.

Let Cs be the set of communities that include seed s. Likewise, let C be the set of all possible

communities of G. Note that Cs ⊆ C and that, for each possible initiator s, community N ∈ Cs.
We now introduce the necessary ingredients of our strategic approach to community forma-

tion. Consider that time t = 0, 1, ... runs discretely. Let Ct ∈ C be the community formed on

5For a recent overview of this literature, see Ahajjam and Badir (2022).
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graph G at time t. We normalize C0 ≡ ∅. Denote P t ⊆ G as the set of links that are pending

at time t. No links are pending initially: P 0 = ∅. Finally, let Pi(C
t) ≡ {ij : ij ∈ G and j /∈ Ct}

be the set of i’s links toward non-community members at time t.

Community-formation game Agents play a game of community formation on network G.

At time t = 0, Nature randomly chooses a node s ∈ N to be the seed according to some

common-knowledge, full-support distribution. Seed s is offered to join community C0. If the

seed s rejects, the process ends. If it accepts, it becomes a community member: C1 = C0∪{s}.
The links of seed s are then added to the set of pending offers. Hence, P 1 = P 0 ∪ Ps(C

1).

At each subsequent period t ≥ 1, Nature randomly draws a link between community member

i ∈ Ct and non-community member j from the set of pending links P t according to some

common-knowledge, full-support distribution Pr(ij|P t). The draw is made without replacement.

Member i decides whether to offer to non-member j the possibility to join community Ct. If

member i makes an offer and j accepts, she joins the community: Ct+1 = Ct ∪ {j}. Otherwise,

the community remains unchanged: Ct+1 = Ct.6 Given that the process is without replacement,

the link ij is then excluded from the set of pending links. In the event that j joins the community,

j’s links toward non-community members Pj(C
t+1) are added to the set of pending links. To

ensure that all pending links are between community members and non-members, we also remove

pre-existing pending links towards j. That is,

P t+1 =

P t \ {ij} if j /∈ Ct+1

P t ∪ Pj(C
t+1) \

[
{ij} ∪ {jk ∈ G : k ∈ Ct}

]
otherwise.

The process repeats until no additional offers can be made. Therefore, the process ends at

the first period t ≥ 1 such that P t is empty. When the process is over, the community C ≡ Ct

is realized and payoffs accrue to each i ∈ N according to the function ui : C → R. We normalize

the payoffs of non-community members to zero and assume that payoffs are homogeneous among

community members, as follows:

ui(C) =

u(C) ∈ R if i ∈ C,

0 otherwise

To make the problem non-trivial, we assume that the seed never has an incentive to reject the

offer from Nature and form an empty coalition.

Assumption 1 (Non-triviality). Let G be the set of connected graphs that can be formed with

n nodes. For any s ∈ N and any G ∈ G, there is C ∈ Cs ̸= ∅, such that u(C) > 0.

The process has a few properties that make it tractable. First, while all community members

have the same realized payoff—which may be positive or negative— non-community members

are all assigned a payoff of zero. Second, joining the community is irreversible: once an agent

joins a community, she cannot leave it. Third, since links may only be drawn once from P t,

6The seed continues to be selected to make offers until someone in the neighborhood of s accepts, if any. Since
the link selection process is without replacement, the game ends if the seed has exhausted its set of link offers
with rejections.
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Figure 1: Running example with node s as the seed.

offers to join the community have no recall. In other words, an offer from i to j can only be

made once. This feature ensures that the community-formation process is finite. Fourth, the

assumption that offers are unidirectional—that is, they can only go from community members

to community neighbors—ensures that the outcome of the community-formation process is a

connected subgraph of G. Therefore, the outcome is necessarily a unique community. Finally,

in this setting, agents are perfectly forward-looking and infinitely patient.

Our solution concept is subgame perfect equilibrium (SPE). In this context, a strategy profile

σ : H → {0, 1} is a mapping from the set of historiesH to {0, 1}, with 1 corresponding to making

an offer/accepting it and 0 corresponding to not making an offer/rejecting it.

3 Equilibrium characterization

In this section, we will provide a characterization of the subgame perfect equilibria of the

community formation game. Throughout the paper, we will use the network depicted in Figure

1 as our running example. In Figure 1, the seed s has already been chosen. We are at t = 0.

Given that Assumption 1 holds, we know the seed will accept the role of initiator for recruiting

potential community members.

Figure 2 illustrates the community-formation process for the network depicted in Figure 1

and an arbitrary payoff function. At the terminal history (t = 5), the final outcome of the

community-formation process is C = {s, i, j}. By the common payoff assumption, the realized

payoff of each agent ℓ = s, i, j is uℓ(C) = 2. Since player k /∈ C, uk(C) = 0. Figure 2 describes

how the community-formation process leads to this outcome.

We show that for a given seed s, subgame perfect equilibrium (SPE) communities maximize

the seed’s payoff. In other words, the recruitment is always seed-optimal. This implies that

SPE communities are essentially unique from the seed’s point of view, even though they may

differ in members and sizes. The intuition underlying the result is simple. Since community

formation starts with seed s, any outcome of the community-formation game must be in Cs ⊆ C
the set of communities that include seed s. Since payoffs are homogeneous, if the seed finds

community C ∈ Cs to be optimal, then its recruited members also find C to be optimal. As

such, members of C, who are infinitely patient, may simply wait for the links that make up C

8
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accept offer no offer

Figure 2: A community-formation process on our running example, with arbitrary payoffs.
Thick links represent a link drawn from the set of pending links P t. The process ends at t = 5
because P 5 = ∅. Its equilibrium outcome is community C5 = {s, i, j}.

to be drawn, offer further members to join, and not offer non-members to join. In Appendix B,

we fully characterize equilibrium profiles (Theorem B1).7 We encapsulate the key properties of

equilibria in the following theorem, which is a direct corollary of Theorem B1:

Theorem 1 (Equilibrium characterization). Suppose that Assumption 1 holds. SPEs exist and

are seed-optimal. That is, given seed s, if the strategy profile σ is an SPE, then all of its

equilibrium communities C ∈ Cs solve maxC∈Cs us(C).8

7Theorem B1 states that a profile is an equilibrium profile if and only if (i) the outcome of each subgame
maximizes the seed’s payoff within the set of communities that are feasible at that subgame’s root history and
(ii) the profile does not rely on non-credible rejections. In other words, if agent j could join a community C′

such that 0 < u(C′) < u(C), the equilibrium profile needs to ensure that j is not invited to join the community
rather than relying on j rejecting an offer made to her.

8If Assumption 1 does not hold, it may be that the equilibrium community is empty. Remember that this
result rests upon Theorem B1 in Appendix B.
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In the network depicted in Figure 1, the set of possible communities with s as a seed is given

by Cs = {{s}, {s, i}, {s, j}, {s, i, j}, {s, i, k}, {s, i, j, k}}. Theorem 1 implies that equilibrium

communities must maximize the seed’s payoff. The set of SPE communities is then a subset

of Cs. In Figure 2, equilibrium communities are either {s, i, j} or {s, i, j, k}, since they both

maximize the seed’s payoff. Therefore, Theorem 1 allows for multiple equilibrium outcomes.

Players may condition their actions on moves from Nature. Consider, for instance, a profile that

has {s, i, j} as an outcome if Nature draws link si at t = 1 and has {s, i, j, k} as an outcome if

Nature draws link sj at t = 1. This profile is an equilibrium profile, since these two outcomes

are payoff-equivalent and maximize the seed’s payoff.

Remark 1. Theorem 1 implies that delegated recruitment entails no tension for the seed’s

payoff. In that sense, delegation is always seed-optimal in a world with homogeneous payoffs.

Since all equilibrium communities maximize the seed’s payoff, they all generate the same

payoff u(C), although the set of agents enjoying this payoff may differ across equilibria. In

our working example (Figure 2), both equilibria {s, i, j} and {s, i, j, k} generate a payoff of 2.

However, uk({s, i, j}) = 0 < uk({s, i, j, k}) = u({s, i, j, k}) = 2. We formalize this notion of

essentially equal communities as follows:

Definition 1. Communities C ̸= C ′ are essentially equal if u(C) = u(C ′).

Based on Definition 1 and Theorem 1, we obtain the following result.

Corollary 1 (Uniqueness). Given seed s, any two SPE communities are essentially equal.

Theorem 1 has the following important implication:

Remark 2. Only community payoffs and the identity of the seed matters for finding equilibrium

outcomes. There is an equilibrium profile that has community C as an outcome for any com-

munity C ∈ Cs that maximizes the seed’s payoff. Therefore, the identity of the seed conditions

the set of communities Cs that are sustainable in equilibrium. As such, the order in which links

are drawn does not impact the equilibrium outcomes.

Welfare considerations. Theorem 1 also has implications for welfare and efficiency. Note

first that some (but not all) equilibrium communities are Pareto-optimal. We first recall the

definition of Pareto optimality in our setting, then state the result.

Definition 2. Community C ∈ C Pareto dominates community C ′ if, for any C ′ ∈ C, ui(C) ≥
ui(C

′) for each i ∈ N , and uj(C) > uj(C
′) for some j ∈ N . Community C is Pareto-optimal if

it is not Pareto dominated by any other community.

Among the equilibrium communities of seed s, only those that are not contained within

another equilibrium community are Pareto-optimal. Since equilibrium communities are seed-

optimal, the seed strictly prefers those to any other feasible community. Among equilibrium

communities, those that admit another equilibrium community as a superset are dominated by

their superset, since those additional members strictly prefer the superset. Formally:

10



Corollary 2 (Pareto optimality). Let C∗
s be the set of equilibrium communities associated with

seed s. Pareto-optimal equilibrium communities are those equilibrium communities that do not

admit another equilibrium community as a superset. Hence, C ∈ C∗
s is Pareto-optimal if there

does not exist C ′ ∈ C∗
s such that C ⊂ C ′.

Going back to Figure 2, it is clear that {s, i, j, k} is the unique Pareto optimal equilibrium

community. We then discuss welfare. Efficient communities maximize welfare. Our notion of

efficiency is local to the seed; in other words, we find the communities that maximize welfare

among the communities that can be formed with seed s.

Definition 3. Community C ∈ Cs is s-efficient if, for any C ′ ∈ Cs, we have
∑

i ui(C) ≥∑
i ui(C

′). With homogeneous payoffs, the welfare of community C simply writes
∑

i ui(C) =

|C|u(C).

Since equilibrium communities are essentially equal, the largest equilibrium community is the

most efficient one. Since only equilibrium communities are seed-optimal, larger, non-equilibrium

communities must generate a lower payoff. Thus, the largest equilibrium community is s-efficient

if the payoffs of larger communities drops sufficiently sharply to offset larger community size.

Formally,

Corollary 3 (s-efficiency). Community C∗ ∈ C∗
s is s-efficient if and only if it is the largest

community in C∗
s and any larger community C ∈ Cs has u(C)

u(C∗) ≤
|C∗|
|C| .

4 Seed-optimality under heterogeneous payoffs

Instrumental to the results we have seen so far was the assumption that payoffs were homo-

geneous. Our central result is Theorem 1, which establishes that equilibrium communities are

seed-optimal, thereby reducing the problem of community formation to a payoff-maximization

problem over Cs, the set of communities that seed s may form. Payoff homogeneity is key to

delivering the result, as it ensures that delegating recruitment is seed-optimal (Remark 1): the

members of a seed-optimal community will coordinate to realize said community, making offers

to community members and making no offers to non-members.

In this section, we first illustrate the problem posed by heterogeneous preferences by con-

sidering two examples. Then, we provide a series of conditions that enforce seed-optimality

under heterogeneous preferences. To represent heterogeneous preferences over the set of com-

munities C, we partition agents into k ≤ n preference classes. The preferences of agent i ∈ N

of preference class l are represented by the function ui : C → R such that

ui(C) =

vl(C) if i ∈ C,

0 otherwise.

To simplify matters, we assume that each agent has a unique favorite community for any seed.

That is, we assume that | argmaxC∈Cs
ui(C)| = 1 for any s, i ∈ N and denote CP

i agent i’s

favorite community. We finally make an assumption that is analogous to, yet stronger than,

Assumption 1:
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Assumption 2. Agents have a strict preference towards joining communities; that is, vk(C) > 0

for any k,C.

Assumption 2 is similar to Assumption 1 in that it transfers to a world of heterogeneous pref-

erences the idea that at least one community is worth joining. At first sight, the assumption is

stronger than Assumption 1 because it posits that any community is worth joining. Essentially,

Assumption 2 simplifies matters by considering the problem of community formation from the

point of view of community members only. In other words, we only consider instances in which

community members may disagree upon which community to form and sidestep the issue of

whether future community members would want to join such community. Relaxing Assumption

2 complicates the problem without providing further intuition. Indeed, a community C such

that ui(C) < 0 for some i is essentially not feasible without transfers. We may then redefine

the problem by only considering the communities that are feasible both graphically and given

a specific preference structure.

To get a sense of the difficulties that arise when considering heterogeneous preferences, we

compare the following two examples. Our first example considers a star network with the seed

as the hub:

Example 1. Star networks

Let G be a star network with s as the hub; that is, for each i ̸= s, we have si ∈ G, and for each

i, j ̸= s, ij /∈ G. Then equilibrium communities are seed-optimal. The intuition is simple: in a

star network, the seed is a hub and retains full control over all offers. She can therefore ensure

that the only offers that are made are to members of her favorite community. Since all agents

have a strict preference towards joining a community, all offers are then accepted. The proof of

this result is given in the Appendix. ⋄

Payoff heterogeneity is inconsequential in a world in which the seed has full control over

the offers made. However, when delegating recruitment is necessary, misaligned preferences can

hinder seed-optimal recruitment, forcing the seed to compromise. Since control over recruitment

is crucial under payoff heterogeneity, seed-optimality can break down even in simple network

structures, as we illustrate below

Example 2. A tension with efficiency and seed-optimality

Consider the line network G = {si, ij}. Suppose that CP
s = {s, i} and CP

i = {s, i, j}. Commu-

nity CP
s cannot be an equilibrium community. Equilibrium communities are:

� {s} if us({s}) ≥ us({s, i, j}),

� {s, i, j} if us({s, i, j}) ≥ us({s}).

In this example, the seed and agent i disagree over the recruitment of agent j—the seed opposes

it. Yet, upon receiving and accepting an offer from the seed, agent i has exclusive control over

the recruitment of agent j. As such, s cannot prevent i from recruiting j and recruitment

unravels. At equilibrium, recruitment and the formation of a community may still be beneficial

for the seed. However, delegation unravels as the seed no longer obtains a payoff that aligns with

the formation of her preferred community due to the misaligned interests of the seed and her
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directly recruited agent Note that the lack of seed-optimality would hold even if s could punish

deviations from i, for example by recruiting some node k. To see why, consider the augmented

network G = {si, ij, sk} and suppose that ui({s, i, j, k}) < ui({s, i}). For s to threaten i with

recruiting k, it must be that link sk is drawn after link ij. In other words, whether the threat

is credible depends on the order in which links are drawn. ⋄

Comparing examples 1 and 2 highlights the relationship between seed-optimality, delegated

recruitment, and payoff homogeneity. As discussed in the preceding section, delegating recruit-

ment has no impact on seed-optimality under homogeneous payoffs. In contrast, recruitment

unravels upon introducing payoff heterogeneity. Delegation becomes problematic, and seed-

optimality breaks down due to the seed’s lack of control over future recruitment.

There are, however, a variety of ways to restore seed optimality under heterogeneous pref-

erences, albeit partially. These solutions broadly belong to two avenues. In the remainder of

the section, we first describe these solutions then discuss them.

The first avenue consists in putting restrictions on preference heterogeneity. We provide

below two different sets of conditions that may restore seed-optimality. The first set of conditions

blends conditions on preferences with graphical considerations, identifying a joint condition on

payoffs and network structure. In a nutshell, the conditions require that the seed has sufficiently

many members that share her preference class and that such members are placed in favorable

locations on the graph, from the seed’s point of view. Formally,

Proposition 1. Suppose that Assumption 2 holds and that seed s belongs to preference class

k. If CP
s is such that (a) for any j ̸= s ∈ CP

s , there is a path to s within CP
s such that all

nodes i ̸= j on this path belong to preference class k, and (b) any k ∈ CP
s that does not belong

to preference class k has Nk \ CP
s = ∅, then there is a seed-optimal equilibrium.

Condition (a) ensures that each member of CP
s is recruited, while condition (b) ensures that

non-members of CP
s are not recruited. The proposition extends the notion of seed control over

recruitment by delegating recruitment to other agents of the same preference class and prevent-

ing members that belong to other preference classes from accessing non-members. Importantly,

condition (a) implies that agents who do not share the seed’s preferences cannot be cut vertices

within CP
s , echoing familiar results about the importance of bridges in diffusion processes (see

e.g., Centola, 2018, 2021).

Another set of conditions on preferences may restore seed-optimality. These conditions do

not rely on restrictions on the network structure, as they simply require that all agents prefer

one set of communities over another. In this case, the equilibrium community will be one such

preferred community. Formally,

Proposition 2. Suppose that there is C∗
s ⊂ Cs such that for any C∗ ∈ C∗

s , C̄ /∈ C∗
s , we have

vk(C
∗) > vk(C̄) for any preference class k. If C is an SPE outcome, then C ∈ C∗

s .

Note that Proposition 2 does not necessarily imply seed-optimality. Nonetheless, it implies

that under moderate heterogeneity, the set of equilibrium communities will be somewhat similar

to the set of communities that are preferred by the seed. Importantly, this result will allow our
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next main result (Theorem 2 in Section 5) and its corollaries to survive under heterogeneous

preferences.

The second avenue for preserving seed-optimality under heterogeneous preferences consists

in introducing transfers. In Appendix C, we consider two extensions to our one-shot game

with heterogeneous preferences. The first one extends the model to allow for side-payments

and transfers that may be contracted upon. In other words, when agent i recruits agent j

into the community, she also offers to j a contract that specifies the share of the community’s

value that j will transfer back to i after payoffs accrue. Contracts are enforced sequentially,

with the last recruited agent being the first to enforce her contract. We show (Proposition

C6) that contractible transfers restore seed-optimality, as each recruiting agent pockets all the

surplus from her recruits, making all the surplus accrue to the seed. Our second extension

considers informal contracts in a repeated game setting. We prove a result (Proposition C7)

that resembles the folk theorem and broadly echoes the intuition gleaned from Proposition C6:

if players are sufficiently patient, then a welfare-maximizing community may be enforced in

equilibrium.

Overall, the results of this section suggest that seed-optimality may be restored when the

preferences of community members are sufficiently similar, or when transfers allow compensating

members to entice them to join the seed’s favorite community. Communities whose members

share interests that are too dissimilar will fail to form, as highlighted by Example 2.

5 Payoffs as a function of community and neighborhood sizes

Let us now return to the assumption of homogeneous payoffs from Section 2. Theorem 1 provides

important insights into equilibrium communities and recruitment. However, as we have seen,

many different communities can coexist at equilibrium. The common element among them is

their optimality in terms of the seed’s payoff, reducing the characterization of subgame perfect

equilibrium (SPE) outcomes to a simple maximization problem over Cs. Beyond this, we cannot

provide much more detail about equilibrium communities without further assumptions on the

payoff functions. We now introduce additional restrictions on payoffs to offer further insights

into equilibrium outcomes and, more importantly, to encompass many situations that are salient

in the network literature.

Let us introduce a specific payoff function under which payoffs vary according to the size

of the community and that of its neighborhood, thereby capturing some of the externalities

and spillovers exerted both by community members and some non-members (those directly

connected to community members). That is, given C ∈ C and its associated neighborhood

NC ≡ {i /∈ C : ∃ij ∈ G such that j ∈ C}, we assume that the payoff generated by community

C is given by

u(C) = v(|C|, |NC |)

with v : N2 → R and where |C| and |NC | denote the cardinal of the sets C and NC . The set of

remaining nodes, AC ≡ N \ {C ∪NC}, is the set of anonymous nodes.

We consider three cases.9 For each of them, we provide a real-world application that has

9We do not study the fourth case in which payoffs decrease in both community and neighborhood sizes.
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been studied in the network literature.

Case 1 (ID-monotonicity). v(.) is increasing in |C| and decreasing in |NC |.

� Political activism in an autocracy. The community is the set of activists who benefit

from having a larger cause (increasing in |C|). The neighborhood is a set of witnesses

who may report activists to the autocrat and crush the movement (decreasing in |NC |).
Examples of political activism with network effects include Chwe (2000) and Siegel (2009).

Case 2 (II-monotonicity). v(.) is increasing in both |C| and |NC |.

� Technology adoption. The community is the set of adopters, while the neighborhood

represents non-adopters that are exposed to the technology. There are complementari-

ties in adoption and spillover effects on the non-adopters. While not adopting, exposed

non-adopters also modify their production technology in ways that complement that of

adopters. Examples of technology adoption with network and spillover effects include

Conley and Udry (2001, 2010), Bandiera and Rasul (2006), and Leister et al. (2022).10

Case 3 (DI-monotonicity). v(.) is decreasing in |C| and increasing in |NC |.

� Criminal gangs. The community is the set of (criminal) gang members, while its neigh-

borhood is the set of gang victims. Gang members are better off when the number of

victims increases (i.e., utility increases in |NC |) but are worse off when there is more

competition for resources. As such, larger gangs decrease the payoff of any individual

gang member (i.e., utility decreases in |C|). Examples of (criminal) gang networks in-

clude Calvó-Armengol and Zenou (2004), Baccara and Bar-Isaac (2008), Herings et al.

(2009), Ballester et al. (2010), Mastrobuoni and Patacchini (2012), Mastrobuoni (2015),

and Herings et al. (2021).11

The additional structure on payoffs afforded by function v(.) allows for a strengthening

of the equilibrium characterization. By complementing Theorem 1, our key result is that all

equilibria can be ranked across all three cases. Overall, gang-formation-type problems, where v

is DI monotone , involve fewer community members than technology-adoption-type problems,

where v is II monotone; that is, v is monotone in both its arguments. In turn, II-monotonicity

generates fewer equilibrium community members than activism-type problems in which v is ID

monotone. In the remainder of this section, we introduce a few concepts, then state our main

result, and finally present its underlying economic intuition.

We define a series of specific communities that play an important role in the subsequent

results. The first one is the notion of a dominating community, a community such that the

union of community members and its neighborhood covers the entire graph. This definition

relates to the standard graph-theoretic concept of a dominating set (König et al., 2014). While

a dominating set D ⊆ N is a subset of N such that D ∪ {j : ij ∈ G, i ∈ D, j /∈ D} = N , a

dominating community has the additional requirement that D is a connected subgraph of G.

Indeed, instances in which agents neither want to grow the community nor its neighborhood seem to be at odds
with the core idea of community formation.

10For overviews, see Chuang and Schechter (2015) and Breza (2016).
11For overviews, see Carrington (2011) and Lindquist and Zenou (2019).
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Figure 3: All communities in Cs for our running example (Figure 1). Points represent sets of
communities.

Definition 4 (Dominating communities). Given graph G, let CD ≡ {C ∈ C : AC = ∅} be the

set of dominating communities. Likewise, let CD,min = {C ∈ CD : |C| = minC′∈CD |C ′|} be the

set of minimal dominating communities, and d ≡ |C| for C ∈ CD,min be the domination number

of G. We can index the definitions with s to define the same notions for the communities whose

seed is s; CD
s , CD,min

s , and ds.
12

We now introduce the additional concept of an exposed community, a community in which

no smaller community has a weakly larger neighborhood. Formally,

Definition 5 (Exposed communities). Given graph G, let CE ≡ {C ∈ C : |C ′| < |C| ⇒ |NC′ | <
|NC |} be the set of exposed communities. Likewise, let CE,max = {C ∈ CE : |C| = maxC′∈CE |C ′|}
be the set ofmaximal exposed communities, and d̃ ≡ |C| for C ∈ CE,max be the exposition number

of graph G. We can index the definitions with s to define the same notions for the communities

whose seed is s; CE
s , C

E,max
s , and d̃s.

13

We provide two illustrations of these two concepts. We first revisit the example of Figure 1

and next look at an arbitrary graph. Figure 3 represents all communities in Cs obtained from

Figure 1 as a function of their size |C| and the size of their neighborhood |NC |. The x-axis is

the size of a community, while the y-axis is the size of its neighborhood. Points represent sets

of communities. For instance, point (3, 1) represents both communities {s, i, j} and {s, i, k}.
Inspecting the graph of Figure 1, it is easy to see that the set of dominating communities

of seed s is CD
s = {{s, i}, {s, i, j}, {s, i, k}, {s, i, j, k}}. The smallest such community is {s, i},

implying that the set of minimum dominating communities of seed s is CD,min
s = {{s, i}}. As

such, the domination number of seed s is ds = 2.

Figure 3 also helps identify exposed communities. Recall that exposed communities are

communities in which no smaller community has a weakly larger neighborhood. Community

C = {s, j} is not exposed, since community C ′ = {s} is smaller and has a weakly larger

neighborhood. NC = {i} and NC′ = {i, j}, which implies that |NC | = 1 < 2 = |NC′ |. More

generally, in Figure 3, a point that admits another one at its upper left cannot be exposed.

Conversely, exposed communities are points that have no points at their upper left. As such,

12Hence, CD
s ≡ {Cs ∈ Cs : ACs = ∅}, CD,min

s ≡ {Cs ∈ CD
s : |Cs| = minC′

s∈CD
s
|C′

s|}, and ds ≡ |Cs| for

Cs ∈ CD,min
s .

13Hence, CE
s ≡ {Cs ∈ Cs : |C′

s| < |Cs| ⇒ |NC′
s
| < |NCs |}, CE,max

s = {Cs ∈ CE
s : |Cs| = maxC′

s∈CE
s
|C′

s|}, and
d̃s ≡ |Cs| for Cs ∈ CE,max

s .
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the set of exposed communities for seed s is CE
s = {{s}}. Trivially, the largest of such community

is {s}, and CE,max
s = {{s}}. Therefore, the exposition number of seed s is d̃s = 1.

Figure 4: Communities Cs of an arbitrary seed s on an arbitrary graph. Points are
sets of essentially equal communities. Black circles are exposed communities. Black squares are
dominating communities. We omit communities whose size ranges from ds + 1 to n − 1. The
black line joins communities that have the largest neighborhood |NC | for a given size |C|.

In Figure 4, we illustrate these concepts in more detail, using an arbitrary graph. Note that

{s} is the only community of size 1. From community {s}, one can form communities of any

size up to the complete community N . As such, Figure 4 has points for all |Cs| ∈ {1, . . . , n}.
The black line joins communities that have the largest neighborhood |NCs | for a given size |Cs|.
Recall that ds is the domination number of seed s (i.e., the size of its smallest dominating

community). The following lemma formally shows that this line is non-decreasing from |Cs| = 1

to |Cs| = ds and then decreasing from |Cs| = ds to |Cs| = n.

Lemma 1. Consider seed s, and let n∗
s(k) = max{C∈Cs:|C|=k} |NC |. It must be that n∗

s is non-

decreasing on {1, . . . , ds} and decreasing on {ds, . . . , n}.

Figure 4 allows the identification of the set of dominating communities CD
s : all communities

on the black line that are to the right of ds are dominating communities; they are represented as

black squares in Figure 4. The smallest such communities form the set of minimum dominating

communities CD,min
s .

Figure 4 also allows the identification of the set of exposed communities CE
s . It is easy to

see that no community to the right of ds is exposed, since the minimum dominating community

is smaller and has more neighbors. Considering the region of the graph to the left of ds, it is

also easy to see that communities under the black line are not exposed, as there is a community

on the black line that has more neighbors and is weakly smaller. Similarly, communities that

are on the black line and are not at a kink are not exposed. Indeed, they have a community

to their left that has just as many neighbors. As such, the set of exposed communities CE
s is

the set of black circles on Figure 4. The largest such communities form the set of maximum
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Figure 5: Illustration of Theorem 2. It may be that CE,max
s = CD,min

s .

exposed communities CE,max
s . As shown in the figure, the exposition number must be smaller

than the domination number: d̃s ≤ ds. In our running example, d̃s = ds, while in this arbitrary

example, d̃s < ds.

Recall that C∗
s is the set of equilibrium communities with seed s. We are now ready to state

the main result of this section, one of the main results of the paper.

Theorem 2 (Equilibrium characterization). We have

1. Political activism. Suppose v is ID-monotone. Then, C∗
s = {N} for any seed s.

2. Technology adoption. Suppose v is II-monotone. Then, C∗
s ⊆ CD

s for any seed s.

3. Criminal gangs. Suppose v is DI-monotone. Then, C∗
s ⊆ CE

s for any seed s.

Theorem 2 characterizes subgame-perfect equilibrium communities for each of our three

cases. Figure 5 provides a graphical summary of what Theorem 2 actually pins down.

In the ID-monotone case (political activism, case 1), the unique equilibrium is obviously

the complete community. Since the payoffs are increasing in community size and decreasing in

neighborhood size, the seed has an incentive to hire every agent in the network.

In the II-monotone case (technology adoption, case 2), SPE are dominating communities.

Indeed, by II-monotonicity, payoffs are increasing in both community and neighborhood sizes.

The seed has an incentive to have every network agent to either be a community member or a

neighbor. In other words, the seed incentives are to form a dominating community.

In the DI-monotone case (criminal gangs, case 3), SPE are exposed communities. To see this,

consider a community Cs that is not exposed. There is then another community C ′
s such that

|C ′
s| < |Cs| and |NC′

s
| ≥ |NCs |. By DI-monotonicity, payoffs are decreasing in the community

size and increasing in the neighborhood size. Therefore, the seed prefers C ′
s to Cs.

Remark 3. Theorem 2 provides a full characterization only for the case in which v satisfies

ID-monotonicity: the unique equilibrium community is the set of all agents. For the other

two cases, our theorem does not provide a complete characterization; yet, it delivers bounds on

the size of equilibrium communities owing to the notions of dominating (case 2) and exposed

(case 3) communities. Note, however, that in both cases, there are generically many such

dominating or exposed communities. Importantly, such communities are not essentially equal.

Theorem 2 allows, however, narrowing down the set of equilibrium candidates to particular

classes of communities. Moreover, by Theorem 1, the equilibrium community is necessarily the

one that maximizes the seed’s payoff.
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Despite these limitations, Theorem 2 has two important corollaries. First, it allows ranking

equilibrium communities by size.

Corollary 4 (Ranking). Let C∗k
s be an equilibrium community associated with seed s when v(.)

satisfies either of cases k = {ID, II,DI}.14 We have

|C∗ID
s | ≥ |C∗II

s | ≥ |C∗DI
s |.

Considering again the example of Figure 1 and applying Theorem 2, we obtain the unique

equilibrium community C∗
s for seed s:

1. If v is ID-monotone, then C∗
s = {s, i, j, k}.

2. If v is II-monotone, then C∗
s ∈ CD

s = {{s, i}, {s, i, j}, {s, i, k}, {s, i, j, k}}.

3. If v is DI-monotone, then C∗
s ∈ CE

s = {{s}, {s, i}}.

Theorem 2 also allows to identify the graph that is optimal for the seed. Recall that G
denotes the set of connected graphs that can be formed with n nodes. Out of all networks

G ∈ G, we seek to identify the one that maximizes the seed’s equilibrium payoff. Since there

could be many such graphs, we require additionally that this graph minimizes the number of

links.

Corollary 5 (Optimal graph). For any G ∈ G, let C∗
G,k be the set of equilibrium communities

for seed s for a value function in case k ∈ {ID, II,DI}. Let G∗
k ⊆ G solve maxG∈G,C∈C∗

G,k
us(C),

and let G∗,min
k be the set of networks in G∗

k that minimize the number of links. Consider a star

network S with s the hub and the remaining n− 1 nodes a spoke. We have that S ∈ G∗,min
k for

any k.

It turns out that the star network is the optimal network for the seed in all three cases. This

result is intuitive: the star network minimizes the number of links, and the seed can recruit all

agents in the network. Furthermore, on a star network, all communities are both dominating

and exposed, affording most flexibility to the seed in forming communities.

Remark 4. Theorem 2 and Corollary 4 also hold when preferences are heterogeneous, that is,

when the value function vl satisfies the same case k ∈ {ID, II,DI} for any preference class l.

Indeed, monotonicity implies that complete, dominating, and exposed communities are preferred

by all agents when preferences are ID, II, and DI-monotone respectively. As such, Proposition

2 implies that equilibria will be complete, dominating, and exposed communities respectively.

6 Policy implications: Key players and denser networks

We now examine two important policy and targeting questions. First, we identify the key players

in the network; that is, the players who contribute the most to the payoff of the equilibrium

community.15 Second, we examine the impact of increasing network density (i.e., adding links)

14For instance, case k = ID refers to ID-monotonicity. We use similarly notations for the the two other cases.
15See Zenou (2016) for an overview of the literature on key players in the network.
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on equilibrium outcomes. For each question, we state a series of general results, then examine

in detail the case in which function v is II-monotone (i.e., case 2, technology adoption).16

6.1 Key players

For a given seed s, key players are the nodes that contribute the most to the payoff obtained

by s, which is the the payoff of the equilibrium community (Theorem 1). In other words, key

players are the nodes whose removal decreases the seed’s equilibrium payoff the most in the

network.

Let G−i be the subgraph induced by removing i, and G−i
s be the component of G−i that

includes s. In our running example (Figure 1), if we remove node i (and its links), we obtain

G−i, which has two separate components: k and {s, j}. Of these, only one component includes

s; that is, G−i
s = {s, j}.

Definition 6 (Key players). Consider seed s on graph G, with equilibrium community C∗. For

any i ̸= s, let C−i∗
s be an equilibrium community on G−i

s , and let ∆u−i
s ≡ u(C∗

s )− u(C−i∗
s ) be

the contribution of i to seed s in terms of payoffs. Node i is a key player if she has the highest

contribution to seed s (i.e., if ∆u−i
s ≥ ∆u−j

s for any j ̸= s). Let Ss be the set of such key

players.

We partially identify key players when v is II-monotone. Interestingly, two statistics derived

from the graph G−i
s turn out to be crucial in determining key players: the size n−i

s of G−i
s

and the domination number d−i
s of G−i

s (see Definition 4). In our running example where

G−i
s = {s, j}, n−i

s = 2. Since the set of dominating communities is C−i,D
s = {{s}, {j}}, the

domination number is d−i
s = 1.

Proposition 3 (Key players in case 2 (technology adoption)). Consider seeds s and i, j ̸= s.

If n−i
s < (≤)n−j

s and d−i
s ≥ d−j

s , then ∆u−i
s > (≥)∆u−j

s .

This proposition shows that we can determine the key player between two agents by simply

comparing the two statistics of G−i
s , n−i

s (size) and d−i
s (domination number). This implies a

partial ordering of players’ contributions.

Let us now discuss and apply this proposition for Figure 1. Recall that there are three

agents besides s. Figure 6 plots n−l
s and d−l

s for the nodes l ∈ {i, j, k}.
16We consider neither case 1 (political activism), because it is trivial, nor case 3 (criminal gangs), because no

clear policy results emerge.
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Figure 6: Key players for the network in Figure 1

Figure 6 illustrates why n−l
s , the size of the remaining community, matters. Using Proposi-

tion 3, we obtain that ∆u−i
s > ∆u−k

s . We see that i and k have the same domination number

d−i
s = d−k

s = 1. In contrast, agent i has a lower community size, since n−i
s = 2 < n−k

s = 3.17

In other words, under II-monotonicity, removing i is more costly in terms of payoffs because

it reduces more the size of the remaining community that s may form. As such, i is more

“important” than k.

Figure 6 also illustrates why d−l
s , the domination number of the remaining community,

matters. Using Proposition 3, we obtain ∆u−j
s ≥ ∆u−k

s . We see that j and k have the same

community size n−j
s = n−k

s = 318 but agent j has a higher domination number, since n−j
s =

2 > n−k
s = 1. In other words, under II-monotonicity, if payoffs put more weight on neighbors

than on community size, being able to form communities with large neighborhoods (i.e., small

minimum dominating communities) is important. Removing j makes it more difficult to form a

small minimum dominating community than removing k. Consequently, j is more “important”

than k. Since this reasoning holds only when payoffs put more weight on neighbors than on

community size, j is only weakly more important than k.

In summary, Proposition 3 helps narrow down the set of candidate key players, but it cannot

fully characterize the set Ss. For example, in the network of Figure 1, it cannot compare agents

i and j, since n−i
s < n−j

s but d−i
s < d−j

s . However, since ∆u−i
s > ∆u−k

s , k /∈ Ss, which implies

that Ss ⊆ A = {i, j}. This logic generalizes into the following corollary, which gives a necessary

condition for being a key player.

Corollary 6. Fix seed s, and let v be II-monotone. If i ∈ Ss, then for all j ̸= i, s, we have

either n−j
s ≥ n−i

s or d−j
s < d−i

s .

Corollary 6 has a simple graphical interpretation. Figure 7 generalizes Figure 6 to an

arbitrary graph. Note that n−i
s ≤ n − 1 and d−i

s ≤ n−i
s . As such, all nodes of the graph must

be under the dotted line. Corollary 6 states that all nodes that have at least another node in

their top-left quadrant (i.e., the grey points) are not in Ss. By eliminating these nodes, we are

left with Ss ⊆ A.

17Observe that G−k
s = {s, i, j}, which implies that n−k

s = 3.
18Observe that G−j

s = {s, i, k}, which implies that n−j
s = 3 and, since the set of dominating communities is

C−j,D
s = {{s, i}, {i, k}}, d−j

s = 2.
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Figure 7: Graphical illustration of Corollary 6 for an arbitrary graph and an arbitrary seed s,
with V being the set of cut vertices of that graph. Corollary 6 implies that i ∈ Ss ⇒ i ∈ A.

Let us formally define the well-known concept of a cut vertex (e.g., Bondy and Murty, 1976,

p. 31) as it appropriately relates to the notion of key players:

Definition 7. A node i is a cut vertex of graph G if the induced subgraph G−i is disconnected.

Denote by VG the set of cut vertices of graph G.

The notion of the cut vertex is important for our understanding of Corollary 6. The size of

the remaining community n−i
s is related to cut vertices, because while n−i

s ≤ n− 1 for any node

i, we have n−i
s < n− 1 ⇐⇒ i ∈ VG. Intuitively, when v is II-monotone, key players’ influence

may stem from two sources. First, they are gateways to some nodes (i.e., they are cut vertices

since they have a small n−i
s ). Second, they are the fastest way to access such nodes, since they

allow building small minimum dominating communities (i.e., high d−i
s ).

6.2 Network density

Let us now study the effect of increasing the network density on the equilibrium oucomes.

6.2.1 General case

We first cover a general payoff that encompasses all three cases. We examine the impact of

adding a link to the network. Note that adding a link adds at most one neighbor to each

existing community and can also create new communities.

To compare different graphs, we add the subscript G to all our previously defined variables.

For instance, instead of Cs, we use CG,s to denote the set of feasible communities for seed s on

graph G. Furthermore, we define G′ = G+ ij as the graph that adds link ij to graph Gs.
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Theorem 3 (Denser networks). Fix seed s and networks G and G′. Let C∗
G and C∗

G′ be

equilibrium communities for seed s on G and G′. If v is ID-, II-, or DI-monotone, then,

u(C∗
G′) ≥ u(C∗

G).

Theorem 3 shows that, in all three cases, adding a link always weakly increases the equi-

librium payoff of agents belonging to the equilibrium community. The additional link either

makes existing communities more desirable or creates new communities that are potentially

more desirable.

Theorem 3 implies neither that the agents who enjoy that payoff on the augmented graph

G′ are a subset of those who enjoyed the payoff on G, nor that this increased payoff increases

welfare (defines as the total sum of utilities, see Definition 3). Even if adding a link increases

the utility, it can shrink the equilibrium community, potentially leading to an overall decrease in

welfare. Finally, while Theorem 3 guarantees that additional links do not decrease equilibrium

payoffs, it is unclear which links strictly increase the equilibrium payoffs.

6.2.2 II-monotonicity (technology adoption, case 2)

To gain additional traction on the effect of variation in network density, we go back to case 2.

We provide necessary and sufficient conditions which guarantee that additional links strictly

increase the equilibrium payoffs.

Our first result (Proposition 4) is straightforward. Recall that when v is II-monotone, equi-

librium communities are dominating (Theorem 2). Also note that since additional links facilitate

creating communities, they cannot increase the domination number. Additional links strictly

increase the seed’s equilibrium payoff (and thus, the payoff of all members of the equilibrium

community) if and only if the domination number strictly decreases and payoffs are such that

agents prefer the smaller minimum dominating community provided by this additional link. To

simplify matters, we assume that the valuation v of a community is singled-peaked as far as

dominating communities are concerned. Formally,

Proposition 4. Suppose that v(k, n−k), k ∈ {0, . . . , n} is single-peaked and reaches a maximum

at k∗. Let C∗
G and C∗

G′ be equilibrium communities for seed s on the networks G and G′,

respectively. Then, u(C∗
G′) > u(C∗

G) if and only if dG′,s < dG,s and k∗ < dG,s.

Which links strictly reduce the domination number? Our next result (Proposition 5) provides

the necessary and sufficient graphical conditions for the additional link ij to strictly reduce the

domination number. Let us introduce them informally first. An additional link strictly reduces

the domination number if and only if it satisfies one of the three conditions illustrated in Figure

8. First, the additional link completes a community (condition 1 in Proposition 5); that is,

the link takes a community that was not dominating (in Figure 8, community {s, i}) and adds

a neighbor to it (in Figure 8, node j), so the community becomes dominating. Second, it

allows shrinking an existing dominating community by bypassing nodes whose sole function is

to make a community connected (i.e., nodes that are cut vertices to the community), but do not

bring any additional neighbors to the community. This second scenario admits two variants:

one may either bypass one cut vertex (condition 2 in Proposition 5) or bypass two cut vertices

(condition 3 in Proposition 5). In Figure 8, vertices k (condition 2) and k, l (condition 3) are
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cut vertices to the dominating communities {s, i, j, k} (condition 2) and {s, i, j, k, l} (condition

3). Additionally, these nodes do not bring neighbors to their communities. As such, the link ij

allows bypassing them.

Figure 8: Illustration of Proposition 5. Gray nodes form a minimum dominating community
for seed s.

While capturing condition 1 formally is relatively straighforward, stating conditions 2 and

3 formally requires additional notations. As illustrated in Figure 8, nodes that do not bring

additional neighbors to a dominating community may be bypassed by an additional link. In

other words, these nodes have no private neighbors in their community. Formally,

Definition 8 (Private neighbors). Let NP
C (I) be the set of private neighbors of nodes I ⊆ C

for community C on graph G. Private neighbors are neighbors of I that are shared with no

other members of C. That is,

NP
C (I) = {j : j ∈ NC and there is i ∈ I ⊆ C such that ij ∈ G and jk /∈ G for any k ∈ C \ I}.

Consider our running example (Figure 1) and community C = {s, i, k}. We have NP
C ({s}) =

NP
C ({i}) = NP

C ({k}) = ∅, while NP
C ({s, i}) = {j}. In other words, j is the private neighbor of

the set {s, i} for community C. Conditions 2 and 3 attempt to shrink a dominating community

by bypassing some of its nodes. Only nodes that have no private neighbors may be bypassed.

Since nodes with no private neighbors do not add neighbors to the community, the sole

reason for these nodes to be included in a minimum dominating community is that they make

this community connected. In other words, these nodes are cut vertices to this community.

Definition 7 introduces the notion of cut vertices of the whole graph G. We have a similar

definition of cut vertices to a community. A vertex i ∈ C is a cut vertex to community C if its

removal makes C disconnected. We denote VG,C as the set of cut vertices to community C on

graph G and introduce the notion of within-community paths. That is, we define PG,C(i, j) as

the set of paths between nodes i, j ∈ C such that all nodes on that path are in C. Node i is
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a cut vertex to C if and only if there are j, k ∈ C such that i ∈ p for any p ∈ PG,C(i, j). In

our running example (Figure 1), community C = {s, i, k} has only one cut vertex: VG,C = {i}.
We will see that if a dominating community C has cut vertices with no private neighbors, then

these cut vertices may be bypassed by the addition of a link.

Another useful way to analyze whether a (sub)graph is connected is to examine its block-

cut tree. The block-cut tree decomposes a community by separating it into a set of blocks

(intuitively, components that do not contain cut vertices) tied to one another by cut vertices.

Formally,

Definition 9 (Block-cut tree). A block bC of a community C on a graph G is a subgraph

of C that is connected, has no cut vertices, and is maximal with respect to those properties.

BG(C), the block-cut tree of community C on graph G, is a bipartite graph with bipartition

(BG,C ,VG,C), where BG,C is the set of blocks of C on graph G and VG,C denotes the set of cut

vertices of C. A block bC ∈ BG,C and a vertex vC ∈ VG,C are adjacent in BG(C) if and only if

vC ∈ bC .

In our running example, consider the complete community C = {s, i, j, k}. This community

has one cut vertex, VG,C = {i}, and has two blocks: b1 = {s, i, j} and b2 = {i, k}. Its block cut

tree is BG(C) = {b1i, b2i}. We will see that links that reduce the domination number are those

that make meaningful changes to the block-cut tree of G.

With this, we are now equipped to state our result formally:

Proposition 5. Denote G′ = G + ij and consider seed s ∈ N . We have dG′,s < dG,s if and

only if one of the following three conditions is met:

1. Complete a community. There is a community C ∈ CG,s such that |C| < dG,s, i ∈ C,

and AC = {j}.

2. Bypass one cut vertex. There is a community C ∈ CD
G,s such that |C| = dG,s, i, j ∈ C,

i and j belong to distinct blocks of BG(C), there is a node k ̸= i, j, s such that k ∈ VG,C ,

NG,C({k}) = ∅, k has degree 2 on BG(C), and there is p ∈ PG,C(i, j) such that k ∈ p.

3. Bypass two cut vertices. There is a community C ∈ CD
G,s such that |C| ≤ dG,s + 1,

i, j ∈ C, i and j belong to distinct blocks of BG(C), and there are two nodes k, l ̸= i, j, s

such that k, l ∈ VG,C , NG,C({k, l}) = ∅, k, l both have degree 2 on BG(C), {k, l} ∈ BG,C ,

and there is p ∈ PG,C(i, j) such that k, l ∈ p.

Proposition 5 spells out the only three cases for which adding a link to a graph reduces the

domination number. Adding a link to a graph both adds neighbors to existing communities

and allows forming new communities. The additional link reduces the domination number if

and only if it completes an existing community and makes it dominating, or allows forming a

new, “better” dominating community. Condition 1 captures the former, while conditions 2 and

3 jointly capture the latter.

Condition 1 is relatively straightforward. The only way to complete a community and reduce

the domination number is to consider a community that has only one anonymous neighbor j

and connect it to a member i of this community. Our running example (Figure 1) with seed s
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and G′ = G+ sk illustrates this condition. The link sk allows completing community C = {s}.
We have |C| = 1 < dG,s = 2. The link sk satisfies s ∈ C and AC = {k}. By condition 1, we

obtain dG′
s
= 1 < dG,s.

We illustrate conditions 2 and 3 in the context of the simplified examples introduced in

Figure 8. Consider condition 2 first. On graph G, community C = {s, i, j, k} and link ij match

condition 2. C is a minimum dominating community of seed s; as such, C ∈ CD
G,s and |C| = dG,s.

Community C has cut vertices VG,C = {i, k}, blocks BG,C = {{s, i}, {i, k}, {j, k}}, and block-cut

tree BG(C) = {{s, i}i, {i, k}i, {i, k}k, {j, k}k}. Since i ∈ {s, i} and j ∈ {j, k}, i and j belong

to distinct blocks of BG,C . Node k has no private neighbors in C; that is, NG,C({k}) = ∅.
Furthermore, k has degree 2 on BG(C), as it is connected to blocks {i, k} and {j, k}. Finally,

the path p = i, k, j is within C and has k ∈ p. By condition 2, dG′,s = 2, since community

C \ {k} ∈ CD,min
G′,s . It is easy to check that condition 3 applies to the relevant graph in Figure 8.

We now discuss the necessity of each part of condition 2. Condition 2 shrinks a community

by one node; as such, to strictly decrease dG,s, the community C that is shrunk needs to be

a minimum dominating community (i.e., a dominating community with dG,s members). The

bypassed node k needs to be a cut vertex with no private neighbors. If k had private neighbors,

she could not be removed. If k had no private neighbors and was not a cut vertex, then k could

be made redundant in G, and so C would not be a minimum dominating community. For the

link ij to bypass k, k must be on a path between i and j. This path connects i to j and is going

through a series of blocks and cut vertices. However, i and j may not belong to the same block,

for otherwise, there are at least two distinct paths between i and j: one with k on it, and the

other without, meaning that k is already bypassed. Finally, for the link ij to guarantee that the

resulting community C \ {k} is connected, removing k must not prevent accessing other blocks.

In other words, k must have degree 2 on the block-cut tree.

Condition 3 extends condition 2 to the removal of two nodes. Since condition 3 shrinks

a community by two nodes, to strictly decrease dG,s, the community C that is shrunk can be

larger than that in condition 2. Specifically, it needs to be a dominating community with size at

most dG,s+1. Similar to condition 2, the removed nodes k, l need to be cut vertices that jointly

have no private neighbors. As in condition 2, the remaining conditions on the path between

i and j and the block-cut tree ensure that the additional link ij actually bypasses nodes k, l

without disconnecting C \ {k, l}.
To summarize, for II-monotone payoffs (technology adoption, case 2), we provide three

alternative necessary conditions for an increase in the total welfare of the members of the

equilibrium community. Each of these conditions reduces the domination number in the network

obtained by adding a link (Proposition 5), which increases the total welfare of the equilibrium

community (Proposition 4).

7 Conclusion

This paper aims to develop a game-theoretic framework to model the formation of a community

and to understand how the community is affected by its members as well as its neighbors.

We have three main results. First, for arbitrary payoffs, there is essentially a unique subgame
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perfect equilibrium (SPE) that maximizes the payoff of the seed. In this sense, delegating part

of the recruitment to other agents entails no loss to the seed/initiator. Second, by having

payoffs depend on the size of the community and its neighbors, we show that three realistic

cases emerge, corresponding to (i) political activism, (ii) technology adoption, and (iii) criminal

gangs. The equilibrium community is complete in the first case, a dominating community in

the second case, and an exposed community in the last case. This implies that we can rank

the size of each community, with the largest in the first case and the smallest in the last case.

Third, when comparing two agents in an equilibrium community, we can identify the key player

using two sufficient statistics: the size of the remaining network and the domination number.

We also provide conditions that ensure adding a link to a network increases the welfare of the

equilibrium community.

When considering heterogeneous payoffs, we identify two distinct avenues for shaping real-life

communities. The first avenue involves forming communities with relatively similar preferences,

reflecting the common observation that members of real-life communities often share similar

interests. As preferences become more dissimilar, the resulting communities will diverge further

from the preferences of their seed members. Communities may still align with the preferences of

their founders if similarly-inclined “zealots” carefully control the recruiting process, a mechanism

often seen in radical organizations such as terrorist groups or clandestine parties. The second

avenue involves compensating members, either through contracts or repeated interactions—the

latter being more realistic in the informal settings that typically characterize network formation.

This approach to community formation can be observed in clientelistic parties or corruption

networks, where newer members often “pay their dues” to their sponsors.
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Appendices

A Proofs of results in the main text

Proof of Theorem 1. The result follows directly from Theorem B1 in Appendix B and As-

sumption 1.

Proof of Corollary 1. Straightforward from the discussion in the text.

Proof of Corollary 2. Note that Corollary 1 implies that u(C) = u(C ′) ≡ ū > 0.

Suppose that there is C ′ such that C ⊂ C ′. Then for any i ∈ C ∪ C ′, we have ui(C) =

ui(C
′) = ū. For any i /∈ C ∩ C ′ = C ′, we have ui(C) = ui(C

′) = 0. For any i ∈ C ′ \ C, we have

ui(C) = 0 < ui(C
′) = ū. So C ′ Pareto dominates C.

Suppose that there is no C ′ ∈ C∗
s such that C ⊂ C ′. Note first that C is not Pareto-dominated

by any C ′′ ∈ C \ Cs. Indeed, since C ′′ /∈ Cs, we have s /∈ C ′′, implying us(C
′′) = 0 < us(C).

Note furthermore that C is not Pareto-dominated by any C ′′ ∈ Cs \ C∗
s . Indeed, Theorem 1

implies that us(C
′′) < us(C). We finally show that C is not Pareto-dominated by any C ′ ∈ C∗

s .

Suppose that there is C ′ ∈ C∗
s with i such that ui(C

′) > ui(C). This implies i ∈ C ′, i /∈ C. Since

C ̸⊂ C ′, there must be j such that j ∈ C, j /∈ C ′. We then have uj(C) = ū > uj(C
′) = 0. So C ′

does not Pareto dominate C. So, C is Pareto optimal.

Proof of Corollary 3. Let ū ≡ u(C∗). Also note that with homogeneous payoffs, the welfare

associated with community C,
∑

i∈N ui(C) = |C|u(C).

We first show necessity. Suppose that C∗ is not the largest community in C∗
s and consider

a larger community C ∈ C∗
s . We have |C|ū > |C∗|ū. So C∗ is not welfare maximizing.

Suppose now that there is a larger community C such that u(C)
u(C∗) > |C∗|

|C| . Rearranging

obtains |C|u(C) > |C∗|u(C∗). So C∗ is not welfare maximizing.

We now show sufficiency. Suppose that C∗ is the largest community in C∗
s and any larger

community C ∈ Cs has u(C)
u(C∗) ≤

|C∗|
|C| . Theorem 1 implies that u(C∗) ≥ u(C) for any C ∈ Cs. So

for any C that is weakly smaller than C∗, we have |C∗|u(C) ≥ |C|u(C). If C is larger than C∗,

rearranging u(C)
u(C∗) ≤

|C∗|
|C| obtains |C∗|u(C) ≥ |C|u(C). So C∗ is welfare maximizing.

Proof of Example 1. Since G is a star, all offers must be from s to some other node i ∈ Ns,

and each node i may receive at most one offer. Also note that in equilibrium, any on-path offer

is accepted. To see why, let C and C ′ be the outcomes resulting from i’s decision to accept and

reject, respectively. Note that i ∈ C and i /∈ C ′. So ui(C) > ui(C
′) = 0, implying that i accepts

any offer made to her.

Fix σN and consider a profile σ∗ such that s makes offers to any i ∈ CP
s and makes no

offer to any i /∈ CP
s . Since all offers are accepted, this profile has CP

s as an outcome. Since

us(C
P
s ) > us(C) for any C ̸= CP

s , s has no incentive to deviate. So this profile is a SPE.

We now show that for the same σN , a profile σ that has C ̸= CP
s as an outcome cannot be

an equilibrium profile. Suppose σ is an equilibrium profile. Consider the path implied by σ∗.

Follow the path from the terminal history up to the root and consider the first history h such

that σ and σ∗ differ. Since both σ and σ∗ are equilibrium profiles, it must be that h is a history
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where s moves. Indeed, if h is a history where i moves, then i accepts under σ, as in under σ∗.

All actions are binary. Label a∗ and a the actions that s takes at h under σ∗ and σ respectively.

By construction, taking action a∗ at h implies outcome CP
s under σ. Taking action a implies

some outcome C ̸= CP
s under σ. Yet us(C) < us(C

P
s ), so s has a profitable deviation in taking

action a∗ instead of a under σ, implying that σ is not an equilibrium profile.

Proof of Proposition 1. Let I ≡ {i ∈ CP
s : ui = us} and J ≡ CP

s \ I. Consider a profile σ∗

such that:

1. If sender i ∈ I is paired with receiver j ∈ CP
s at on-path history h such that CP

s is feasible

from h, then i makes the offer.

2. If sender i ∈ I is paired with receiver j /∈ CP
s at on-path history h such that CP

s is feasible

from h, i does not makes the offer.

3. Moves at any other history are specified using backward induction.

We show that σ∗ is an equilibrium profile.

We first establish that at the last on-path history h such that receiver i moves, i must

accept the offer. Since i moves as a receiver, condition (3) implies that her move is specified by

backward induction. Suppose that i rejects at h under σ∗ and denote C and C ′ the outcomes

from rejecting and accepting, respectively. Note that i /∈ C and i ∈ C ′. As such, i’s payoff from

rejecting is ui(C) = 0 < ui(C
′), which is a contradiction. So i must accept at h.

We now establish that profile σ∗ has CP
s as an outcome. Conditions (1) and (a) imply that

any j ∈ CP
s receives an offer from some i ∈ I. Conditions (2) and (b) imply that no k /∈ CP

s

receives an offer. Since all players accept their last on-path offer, CP
s is the outcome.

We finally establish that players i ∈ I have no incentive to deviate at the histories that

are specified by conditions (1) and (2). Let C be the outcome from deviating. We have

ui(C
P
s ) ≥ ui(C), so i has no incentive to deviate.

Proof of Proposition 2. Suppose not. That is, suppose that there is C /∈ C∗
s such that there

is an equilibrium profile σ that has C as an outcome. Follow the path from the root history and

stop at the last history h0 such that offerer i moves and some community C∗ ∈ C∗
s is feasible

from h0.

Consider the subgame that starts at h0 and denote h′ the history that immediately follows a

deviation from σ at h0 and denote C ′ its outcome under σ. Notice that it must be that C ′ /∈ C∗
s

for otherwise i has a profitable deviation at h0.

From h0, construct a path σ′ of offers and acceptances such that (a) C∗ is the outcome, (b)

no offers are made to any j /∈ C∗, and (c) all offers are accepted.

Consider now the terminal history of σ′ and move up σ′ towards the root history h0. Stop

at the first history h1 such that σ′ and σ diverge. Consider player j1 that moves at h1 and

suppose that the outcome under σ is C1. Since σ is a SPE, it must be that uj1(C1) ≥ uj1(C
∗).

We now establish that j1 ∈ C1. This is obvious if j1 is an offerer at h1. If j1 is a recipient,

she accepts under σ′, by construction. Therefore, she rejects under σ. Since C∗ ∈ C∗
s , we have

uj1(C
∗) > 0, implying uj1(C1) > 0, which then implies j1 ∈ C1. So we have j1 ∈ C1 ∩ C∗ and

uj1(C1) ≥ uj1(C
∗), implying that C1 ∈ C∗

s .
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This argument may be iterated with a slight modification: from h1, move up σ′ towards

the root history h0. Stop at the second history h2 such that σ′ and σ diverge. Consider player

j2 that moves at h2 and suppose that the outcome under σ is C2. Notice that under σ, the

outcome from deviating at h2 is C1 ∈ C∗
s . Since σ is a SPE, it must be that uj2(C2) ≥ uj2(C1).

We now establish that j2 ∈ C2. This is obvious if j2 is an offerer at h2. If j2 is a recipient,

she accepts under σ′, by construction. Therefore, she rejects under σ. Since C1 ∈ C∗
s , we have

uj2(C1) > 0, implying uj2(C2) > 0, which then implies j2 ∈ C2. So we have j2 ∈ C2 ∩ C1 and

uj2(C2) ≥ uj2(C1), implying that C2 ∈ C∗
s .

We iterate this argument k ≥ 1 times until reaching h0. The argument implies that the

outcome following a deviation from σ at h0 is Ck ∈ C∗
s . Yet, we have established previously that

Ck = C ′ /∈ C∗
s .

Proof of Lemma 1. We show that for any k ∈ {1, . . . , ds − 1}, we have n∗
s(k) ≤ n∗

s(k + 1).

Let C∗
s (k) be a community that solves maxC∈Cs:|C|=k |NC |. Since G is connected and C∗

s (k) is

not a dominating community, there is i ∈ NC∗
s (k)

that has a neighbor j ∈ AC∗
s (k)

. So community

C∗
s (k) ∪ {i} has at least n∗

s(k) neighbors, and so n∗
s(k) ≤ n∗

s(k + 1).

We now show that n∗
s is decreasing on {ds, . . . , n}. Note that for any k ≥ ds, it must be

that C∗(k) ∈ CD
s . As such, n∗

s(k) = n− k, which is decreasing in k.

Proof of Theorem 2. Note that by Theorem 1, an equilibrium community of seed s C∗
s sat-

isfies u(C∗
s ) = maxC∈Cs u(C). Also note that by assumption 1, we have C∗

s ̸= ∅.
Proof of case 1. Note that N ∈ Cs for any s, and that we have |C| < n for any C ̸= N and

|NC | ≥ 0 for any C ̸= N . Therefore argmaxC∈Cs us(C) = {N}.
Proof of case 2. We prove a useful lemma.

Lemma A2. Consider graph G. If community C ∈ Cs \ CD
s , then there is C ′ ∈ CD

s such that

|C ′| > |C| and |NC′ | ≥ |NC |.

Proof of Lemma A2. Suppose C ∈ Cs \ CD
s . Note that there is C∗ ∈ Cs such that |C∗| = |C|+1

and |NC∗ | ≥ |NC |. Indeed, if C ∈ Cs \ CD
s , then there is i ∈ NC that has at least one neighbor

k ∈ AC , for otherwise C is a dominating community. So the community C∗ = C ∪ {i} satisfies

|C∗| = |C| + 1 > |C|, and |NC∗ | ≥ |NC |. Iterating this argument for all such nodes i, it must

be that there is C ′′ ∈ CD
s such that |C ′′| > |C| and |NC′′ | ≥ |NC |.

For any C ∈ Cs \ CD
s , Lemma A2 implies that there is C∗ ∈ CD

s such that |C∗| > |C| and
|NC∗ | ≥ |NC |. So u(C∗) > u(C).

Proof of case 3. We prove the contrapositive. That is, we prove that if C /∈ CE
s , then C is

not an equilibrium community of seed s. If C /∈ CE
s , then there is C ′ such that |C ′| < |C| and

|NC′ | ≥ |NC |, implying that u(C ′) > u(C).

Proof of Corollary 4. By Theorem 2, it must be that |C∗1
s | = n ≥ |C∗2

s | ≥ ds, and that

d̃s ≥ |C∗3
s |. Since ds ≥ d̃s, it must be that |C∗2

s | ≥ |C∗3
s |.

Proof of Corollary 5. Note first that the star graph S minimizes the number of links among

all graphs G ∈ G. As such, if S ∈ G∗
k , then S ∈ G∗,min

k . To prove the corollary, it suffices to
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show that S ∈ G∗
k for any k ∈ {ID, II,DI}. In this proof, we subscript all objects with G to

indicate the graph they belong to.

Consider k = ID. Theorem 2 implies that C∗
G,k = N for any G ∈ G. Since the complete

community N may be formed on any graph, we have that G∗
ID = G.

Consider k = II. Theorem 2 implies that C∗
G,k ⊆ CD

G for any G ∈ G. Suppose that the

value function v is maximized at v(m,n−m). In other words, v is maximized by a dominating

community Cm of size m. Such community may not be feasible on all graphs G ∈ G. On S,

any community is dominating, so Cm ∈ C∗
S,II , implying that S ∈ G∗

II .

Consider k = DI. Then v is maximized at v(1, n − 1). In other words, v is maximized by

an exposed community C1 of size 1. Such community may not be feasible on all graphs G ∈ G.

On S, any community is exposed, so C1 ∈ C∗
S,DI , implying that S ∈ G∗

DI .

Proof of Proposition 3. Consider i, j ̸= s such that ns,−i < (≤)ns,−i and ds,−i ≥ ds,−j .

Consider furthermore communities Ci ∈ EG−i
s
, Cj ∈ E

G−j
s
. Note that if C ∈ CD

G−i
s
, then there is

C ′ ∈ CD
G−j

s
such that |C ′| = |C| and |N

G−j
s ,C′ | > (≥)|NG−i

s ,C |. By P 2-monotonicity, it must be

that u(C ′) > (≥)u(C). As such, we have u(Cj) > (≥)u(Ci), which implies δis > (≥)δjs.

Proof of Corollary 6. Suppose not. That is, suppose there is i ∈ Ss and j such that n−j
s <

n−i
s and d−j

s ≥ d−i
s . Proposition 3 implies that ∆u−i

s < ∆u−j
s , which contradicts i ∈ Ss.

Proof of Theorem 3. By Theorem 1, C∗
Gs

solves maxC∈CGs
u(C). As such, it suffices to show

that maxC∈CG′s u(C) ≥ maxC∈CGs
u(C).

Suppose we are in case 1. By Theorem 2, we have C∗
Gs

= C∗
G′s = N . As such,

maxC∈CG′s u(C) = maxC∈CGs
u(C). Suppose now that v is increasing in |NC |; that is, sup-

pose that v matches cases 2 or 3 and note that any C ∈ CG satisfies:

|NG′C | =

|NGC |+ 1, if i ∈ C and j ∈ AC

|NGC | otherwise.

Since v is increasing in |NC |, then for any C ∈ CGs , we have uG′(C) ≥ uG(C), which proves the

claim.

Proof of Proposition 4. Suppose that dG′,s < dG,s and k∗ < dG,s. By condition 2, it must

be that C∗
G ∈ CD,min

G,s . Proposition 5 implies that there is C ∈ CD
G′,s such that |C| = dG′,s < dG,s.

If dG′,s ≥ k∗, then u(C) > u(C∗
G). If dG′,s < k∗, then there is C ′ ∈ CD

G′,s such that |C ′| = k∗.

We have u(C) > u(C∗
G).

Consider s ∈ N such dG′,s = dG,s. Then u(C∗
G′) = u(C∗

G). Suppose now that k∗ ≥ dG,s.

Then it must be that C∗
G is essentially equal to C∗

G′ , which implies u(C∗
G′) = u(C∗

G).

Proof of Proposition 5. We first show that if any of conditions 1, 2, 3 is met, then dG′,s <

dG,s. Suppose that condition 1 holds. Note first that by construction, C /∈ CD
G,s and C ∈ CD

G′,s.

Also note that |NG′C | = |NGC | + 1. Furthermore, note that it must be that |C| = dG,s − 1.

Indeed, suppose that |C| < dG,s − 1. Since G is connected and AC = {j}, it must be that there

is k ∈ NGC such that j ∈ NG,{k}. Therefore, we have that C ∪ {k} ∈ CD
G , and |C ∪ {k}| =

|C|+ 1 < dG,s, a contradiction. So we have |C| = dG,s − 1 < dG,s, which proves the point.
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Suppose now that condition 2 holds. Note that community C ′ ≡ C\{k} has |C ′| = dG,s−1 <

dG,s. To prove the point, it suffices to show that C ′ ∈ CD
G′,s.

We first show that C ′ ∈ CG′
s
. That is, we show that PG′,C′(x, s) ̸= ∅ for any x ∈ C ′. If there

is p′ ∈ PG,C(x, s) such that k /∈ p′, then p′ ∈ PG′,C′(x, s). Suppose now that there is no such

p′. It must be that x, s belong to distinct blocks bx, bs respectively of C. Note that if there is

a path between bx, bs on BG′(C ′), then PG,C′(x, s) ̸= ∅. We show that such path exists. Let

bi, bj be the blocks of i, j respectively. On BG(C), there is a path between bx and bs that goes

through k. Since k ∈ p, there is also a path between bi and bj that goes through k. Since k

has degree 2 on BG(C), it must also be that (without loss of generality) there is a path from

bx to bi and from bs to bj such that k is on none of those two paths. Note that on BG′(C ′),

the link ij creates a new block bij = {i, j}, and implies that i, j ∈ VG′,C′ . As such, the path

bx, . . . , bi, i, bij , j, bj , . . . , bs connects bx to by.

We now show that C ′ ∈ CD
G′,s. Since NG,C({k}) = ∅, it must be that NG′,C′ = NG,C ∪ {k}.

As such, C ′ ∈ CD
G′,s.

Suppose now that condition 3 holds. Note that community C ′ ≡ C \ {k, l} has |C ′| ≤
dG,s − 1 < dG,s. We prove the point as for condition 2. That is, we first show that C ′ ∈ CG′,s,

then that C ′ ∈ CD
G′,s. The proof proceeds as for condition 2, but considers k, l instead of k. The

additional requirement that bkl ≡ {k, l} ∈ BG,C implies that the path between bi(bx) and bj(bs)

goes through k, bkl, l instead of just k.

We now show that if dG′,s < dG,s, then any of conditions 1, 2, 3 is met. Consider C ′ ∈ CD
G′,s

and suppose that dG′,s < dG,s. Suppose furthermore that C ′ ∈ CG,s. Then it must be that

condition 1 is met for otherwise, either C ′ /∈ CD
G′,s or dG′,s = dG,s.

Suppose now that C ′ /∈ CG,s. Then it must be that i, j ∈ C ′ and PG′,C′(i, j) = {{i, j}} for

otherwise, C ′ ∈ CG,s. We show that there must be C ∈ CD
G,s that meets condition 2 or 3. To do

so, we prove a useful lemma.

Lemma A3. Suppose G′ = G+ij. Consider seed s and community C ∈ CD
G′,s such that i, j ∈ C

and PG′,C(i, j) = {i, j}. It must be that one of the following statements is true:

1. There is k ∈ NG′,C such that k ∈ NG′,C(b1) and k ∈ NG′,C(b2) for b1 ̸= b2 ∈ BG′,C .

2. There are k, l ∈ NG′,C such that there is a link between k and l and k ∈ NG′,C(b1) and

l ∈ NG′,C(b2) for b1 ̸= b2 ∈ BG′,C .

Proof of Lemma A3. Note that G is connected. In other words, there must be a path from i

to j on G that does not go through the link ij. Suppose that both statements 1 and 2 are

false. We show that this implies that G is disconnected. To do so, we show that on G′, the

only path from i to j is p = i, j. Since p is the only path from i to j with all nodes within C,

if another path p′ exists, it must go through nodes in NG′,C . Specifically, p
′ starts from i, then

stays within C, then leaves C through some block b1, and re-enter C through some other block

b2 and finally reach j. Yet, if statements 1 and 2 are false, p′ cannot re-enter C through block

b2.

Note that C ′ meets the requirements of Lemma A3. Suppose condition 1 of Lemma A3

holds. We show that C = C ′ ∪ {k} satisfies condition 2 of Proposition 5. By construction,
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C ∈ CD
G,s. Furthermore, since dGs > dG′s, it must be that dG,s ≥ dG,′s + 1. As such, |C| = dG,s.

Furthermore, since C ′ ∈ CD
G′,s, it must be that NG,C({k}) = ∅. Additionally, on G, k ∈ p for

any p ∈ PG,C(i, j). As such k ∈ VG,C and i, j belong to different blocks of BG(C). It remains

to show that k has degree 2 on BG(C). Suppose not. That is, suppose that there is a node m

that belongs to some block bm ̸= bi, bj , with a link from bm to k on BG(C). If that is so, then

C ′ is not feasible on G′.

Suppose now that condition 2 of Lemma A3 holds. We show that C = C ′ ∪ {k, l} satisfies

condition 3 of Proposition 5. By construction, C ∈ CD
G,s. Furthermore, |C| = dG′,s + 2. Since

dG′,s ≤ dG,s − 1, we have |C| ≤ dG,s + 1. Furthermore, since C ′ ∈ CD
G′,s, it must be that

NG,C({k, l}) = ∅. Additionally, on G, k, l ∈ p for any p ∈ PG,C(i, j). As such k, l ∈ VGC and

i, j belong to different blocks of BG(C). We show as for condition 1 of Lemma A3 that k and

l have degree 2 on BG(C). Finally, since k, l ∈ VG,C and there is a link between k and l, then

{k, l} ∈ BG,C .

B Characterization of equilibrium profiles under homogeneous

preferences

Recall that Ch is the community that is formed at history h and let Ch be the set of communities

that are feasible from h.

Theorem B1. The strategy profile σ is a SPE if and only if, for any subgame starting at history

h at which sender i considers the offer ij, (i) its outcome C∗
h solves maxC∈Ch ui(C) ≡ ūh if

ūh ≥ 0 and C∗
h = Ch if ūh < 0, and (ii) if j /∈ C∗

h and maxC∈Ch:j∈C u(C) > 0, then i makes no

offer to j under σ and, following a deviation from i, j accepts i’s offer.

Proof of Theorem B1. We show that a profile σ that satisfies conditions (i) and (ii) is a

SPE. Consider the subgame that starts at history h. We first assume that ūh < 0 and show

that no player on path has a profitable one-shot deviation from the path implied by σ.

We first show that receivers on path have no profitable one-shot deviation from the path

implied by σ. We begin by showing that σ implies that at any child history hr of h such that

a receiver moves, the receiver rejects the offer under σ. Consider a subgame that starts at a

child history hs of h such that a sender moves. Since Chs ⊆ Ch, it must be that ūhs ≤ ūh < 0.

As such, condition (1) requires that the outcome of that subgame is Chs . For Chs to be the

outcome, it must be that on the path from hs, all receivers reject offers. That is, at any child

history hr of h such that a receiver moves, the receiver rejects the offer under σ.

We now focus on the path from history h implied by σ. Our argument implies that at any

on-path history hr such that receiver r moves, r rejects the offer under σ. We now show that

r has no profitable one-shot deviation in accepting said offer. Since profile σ implies that all

offers are rejected, it must be that the community that Chr that is formed at history hr is Ch.

Since all offers at any child history of h are rejected, the outcome of the subgame following

acceptance is community Ch ∪ {r}. Her payoff from accepting is then u(Ch ∪ {r}) ≤ ūh < 0.

We then show that senders on path have no profitable one-shot deviation from the path

implied by σ. Senders on path are indifferent between making an offer and not making it, since

all offers are rejected. As such, they have no profitable deviation from the path implied by σ.
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Together this implies that if ūh < 0, then no player on path has a profitable one-shot

deviation from the path implied by σ.

We now assume that ūh ≥ 0 and show that no player on path has a profitable one-shot

deviation from σ.

Offerers have no incentive to deviate since their payoff from deviating is u ≤ ūh.

Consider now an on-path history hr such that receiver r moves. Suppose first that r accepts

on path and denote C the outcome from rejecting. She has no incentive to reject, as condition

(i) implies that ūh ≥ ur(C) ≥ 0.

Suppose now that r rejects on path and denote C the outcome from accepting. Suppose

furthermore that r ∈ C∗
h. This implies that there is a later on-path history such that r accepts

(i.e., at hr, r is delaying her entry). We show that u(C) = u(C∗
h). Denote hD the history

following r’s deviation notice that C∗
h ∈ ChD , and (b) a sender must move at hD. Since C

∗
h ∈ ChD ,

condition (i) implies that ūhD
= ūh; that is, u(C) = u(C∗

h). As such, r is indifferent between

accepting and rejecting. Suppose now that r /∈ C∗
h. Note that it must be that u(C) ≤ 0 for

otherwise, σ would violate condition (ii). As such, r has no incentive to deviate.

We now show that a profile σ that does not satisfy condition (i) or (ii) is not a SPE. Suppose

that σ admits a subgame starting at history h whose outcome community C does not satisfy

(i). Consider the case where ūh < 0. Since ūh < 0, not satisfying (i) implies C ⊃ Ch. As

such, there must be a receiver that accepts on path. This receiver has a profitable deviation in

rejecting, since u(C) ≤ ūh < 0.

Consider now the case where ūh ≥ 0. Let C∗ be a community that solves maxC∈Ch ui(C).

Starting from history h, consider the last history h′ on σ’s path such that a sender j moves and

C∗ ∈ Ch′
(note that it may be that h′ = h). Since C∗ ∈ Ch′

and a sender moves, there must

be a profile σ∗ such that (a) C∗ is the outcome of the subgame that starts at h′, (b) Nature’s

moves are identical to those of σ, and (c) condition (ii) holds on the path from h′ to C∗.

Consider now the path implied by σ∗ from h′ to its terminal history, which has outcome

C∗. Start from the terminal history and stop at the first history h′′ such that σ and σ∗ differ

and the outcome under σ is a community C ′′ such that u(C ′′) < u(C∗). Note that it may be

that h′ = h′′, in which case C ′′ = C. Let k be the player that moves at h′′. By construction, h′′

satisfies several properties:

� It is on the path implied by σ∗ from h′ to C∗.

� Player k chooses between two actions that have, under σ, outcomes C ′′ and C∗′ such that

u(C ′′) < u(C∗) = u(C∗′) as an outcome.

� Player k chooses the action that has C ′′ as an outcome under σ.

We show that either player k has a one-shot profitable deviation, or σ∗ does not satisfy

condition (ii). Suppose first that k is a sender. As such, k ∈ C ′′, C∗′ . Since uk(C
∗′) = u(C∗′) >

u(C ′′) = uk(C
′′), k has a one-shot profitable deviation from σ. Indeed, she has an incentive to

deviate to the action that has C∗′ as an outcome instead of C ′′.

Suppose now that k is a receiver. If k rejects under σ, she has a profitable deviation in

accepting, as u(C∗′) > 0. Suppose now that k accepts under σ. If u(C ′′) < 0, then she has a
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profitable deviation in rejecting. If u(C ′′) > 0, then k has no profitable deviation, but σ∗ must

then violate condition (ii), a contradiction.

Consider now a subgame starting at history h at which sender s considers the offer sr such

that (i) holds but (ii) does not. Notice that this requires that the outcome C∗
h of this subgame

satisfies u(C∗
h) = ūh ≥ maxC∈Ch:j∈C u(C) > 0. Also notice that not satisfying condition (ii)

implies that on path, it must be that s makes an offer to r and r rejects this offer. Since

r /∈ C∗
h, it must be that her on-path payoff is ur(C

∗
h) = 0. Let C be the outcome following

a deviation from r (i.e., following r accepting the offer from s), and notice that r ∈ C. We

establish that ur(C) > 0. Suppose that the history following r’s deviation is a terminal history.

Then |{C ∈ Ch : j ∈ C}| = 1, implying that ur(C) > 0. Suppose that the history following r’s

deviation is not a terminal history. Then it is followed by a subgame beginning with a history

h′ such that some sender moves. Since σ satisfies condition (i), its outcome C∗
h′ = C solves

maxC∈Ch′ u(C). Since Ch′
= {C ∈ Ch : j ∈ C}, we have ur(C) > 0. As such, r has a profitable

deviation in accepting the offer from s, implying that σ is not a SPE.

C Transfers

Community formation game with contracts. We extend the one-shot game described

in Section 2 as follows. When i offers j to join the community, i also offers j a contract

tji : R+ → R+, such that 0 ≤ tji(x) ≤ x. The contract specifies the transfer tji that j will make

to i once the game is over, as a function of the budget available to j. Once the game is over

with community C ∈ Cs as an outcome:

1. Payoffs accrue to each player i as per ui(C)

2. Contracts are executed in the reverse order in which offers have been accepted.

Suppose that player j ∈ C accepted an offer from i ∈ C, and suppose that j recruited the set

of players K ⊂ C. The budget bj(C) available to j for transfers to i amounts to the utility that

accrued to her and her incoming transfers; that is:

bj(C) = uj(C) +
∑
k∈K

tkj(bk(C)),

and j’s payoff writes

ωj(C) =


bj(C)− tji(bj(C)) if j ∈ C and j ̸= s

bs(C) if j = s

0 otherwise.

Proposition C6. A profile such that (a) tji(C) = bj(C) for any j ̸= s and (b) the outcome

solves maxC∈Cs
∑

i ui(C) is a SPE.

Proof. This profile is such that ωj(C) = 0 for any j ̸= s and any C ∈ Cs. As such, any player

j ̸= s is indifferent between any of their moves. The seed s has no incentive to deviate since

her payoff ωs(C) solves maxC∈Cs
∑

i ui(C).
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While agents may resort to contracts to implement welfare-maximizing communities, such

contracts are highly dependent upon a well-functioning third-party enforcement mechanism.

Indeed, note that the contracts described in Proposition C6 require community members to

relinquish all their wealth to the member that recruited them into the community. It is imme-

diate that in the absence of third-party enforcement, agents would renege from such contract

ex-post and keep their wealth instead. Well-functioning third-party enforcement, in turn, goes

against the spirit of some settings in which we expect communities to form. For instance, in

the context of criminal organizations, we expect that the state is not able to enforce contracts

between criminals.

Repeated game without contracts. We now consider the setting of a repeated game,

in order to show that informal contracts may also support the implementation of welfare-

maximizing communities.

At each time period t ≥ 0, agents play the community-formation game Γt with heterogeneous

preferences. Once the community-formation game is over with community Ct as an outcome,

agents play a transfer game. That is, each agent i makes the vector of transfers ti to all agents.

Transfers are constrained such that

1. Non-community members may not make nor receive transfers; that is, tij = 0 if i /∈ Ct or

j /∈ Ct.

2. Transfers satisfy a budget constraint. In other words, they may not exceed the welfare

produced by the community; that is,
∑

i,j tij =
∑

i ui(Ct)

Once the transfer game is over, flow payoffs accrue, with

ωit(Ct) =
∑
j

tji − tij

The stage game is repeated infinitely many times and agents discount the future with rate

δ ∈ (0, 1). Payoffs at time t write

Uit = (1− δ)
∞∑
t=τ

δτ−tωiτ (Cτ )

We show that if agents are sufficiently patient, this game admits an equilibrium profile in

which an efficient community is implemented at each time period. While the result resembles

a folk theorem, obtaining it is non-trivial, because the stage game is itself dynamic. Under

a static stage game, minimax threats usually obtain cooperation. It is unclear whether those

threats are credible in a dynamic stage game.

Note that for any seed s, the stage game admits a SPE profile σs that has (possibly inefficient)

community Cs ∈ Cs as an outcome and such that no transfer occurs (i.e., tij = 0 for any

i ̸= j). Our candidate profile σ has an efficient community C∗
s ∈ Cs as an outcome. It rewards

cooperation by using transfers to distribute the additional surplus generated by C∗
s relative to

Cs in ways that make the members of C∗
s better off than under Cs, and deters defections by

the threat of reverting back to σs. Formally:
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Definition C10 (Candidate profile σ). For any seed s ∈ N , pick a strategy profile σs that

is a SPE of the stage game with seed s and such that no transfer occurs (i.e., tij = 0 for any

i ̸= j). If the outcome Cs of σs is efficient, set σ = σs. Otherwise, construct a profile σ such

that (i) its outcome is some community efficient community C∗
s , and (ii) all offers are accepted

on path, and (iii) transfers satisfy ωi(C
∗
s ) > ωi(Cs) for any i ∈ C∗

s . The off-path histories of

σ are identical to those of σs. Following a deviation from σ, agents revert forever to σs every

time seed s is picked.

Proposition C7. There is δ ∈ (0, 1) such that for any δ ≥ δ, the profile σ is a SPE of the

repeated game.

Proof of Proposition C7. This proposition can be proven exactly as Proposition 2.7 in Fer-

rali (2020).
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